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SECTION 5-5: FREQUENCY TRANSFORMATIONS 
 
Until now, only filters using the lowpass configuration have been examined. In this 
section, transforming the lowpass prototype into the other configurations: highpass, 
bandpass, bandreject (notch) and allpass will be discussed . 
 
Lowpass to Highpass 
 
The lowpass prototype is converted to highpass filter by scaling by 1/s in the transfer 
function. In practice, this amounts to capacitors becoming inductors with a value 1/C, and 
inductors becoming capacitors with a value of 1/L for passive designs. For active designs, 
resistors become capacitors with a value of 1/R, and capacitors become resistors with a 
value of 1/C. This applies only to frequency setting resistor, not those only used to set 
gain. 
 
Another way to look at the transformation is to investigate the transformation in the s 
plane. The complex pole pairs of the lowpass prototype are made up of a real part, α, and 
an imaginary part, β. The normalized highpass poles are the given by: 

and: 

A simple pole, α0, is transformed to: 

Lowpass zeros, ωz,lp, are transformed by: 

 
In addition, a number of zeros equal to the number of poles are added at the origin.  
 
After the normalized lowpass prototype poles and zeros are converted to highpass, they 
are then denormalized in the same way as the lowpass, that is, by frequency and 
impedance.  
 
As an example a 3 pole 1dB Chebyshev lowpass filter will be converted to a highpass 
filter.  
 

α
α2 + β2αHP =

βHP = β
α2 + β2

αω,HP =
1
α0

ωZ,HP = 1
ωZ,LP

Eq. 5-43

Eq. 5-44

Eq. 5-45

Eq. 5-46
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From the design tables of the last section: 

This will transform to: 

Which then becomes: 

 
A worked out example of this transformation will appear in a later section. 
 
A highpass filter can be considered to be a lowpass filter turned on its side. Instead of a 
flat response at DC, there is a rising response of n × (20dB/decade), due to the zeros at 
the origin, where n is the number of poles. At the corner frequency a response of  
n × (–20dB/decade) due to the poles is added to the above rising response. This results in 
a flat response beyond the corner frequency. 
 
Lowpass to Bandpass 
 
Transformation to the bandpass response is a little more complicated. Bandpass filters 
can be classified as either wideband or narrowband, depending on the separation of the 
poles. If the corner frequencies of the bandpass are widely separated (by more than 2 
octaves), the filter is wideband and is made up of separate lowpass and highpass sections, 
which will be cascaded. The assumption made is that with the widely separated poles, 
interaction between them is minimal. This condition does not hold in the case of a 
narrowband bandpass filter, where the separation is less than 2 octaves. We will be 
covering the narrowband case in this discussion. 
 
As in the highpass transformation, start with the complex pole pairs of the lowpass 
prototype, α and β. The pole pairs are known to be complex conjugates. This implies 
symmetry around DC (0Hz.). The process of transformation to the bandpass case is one of 
mirroring the response around DC of the lowpass prototype to the same response around 
the new center frequency F0. 
  

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αHP1=
βHP1=
αHP2=

.2722
1.0639
2.2158

αHP1=
βHP1=
αHP2=

.2722
1.0639
2.2158

F01=
α=
Q=

F02=

1.0982
.4958
2.0173

2.2158

F01=
α=
Q=

F02=

1.0982
.4958
2.0173

2.2158
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This clearly implies that the number of poles and zeros is doubled when the bandpass 
transformation is done. As in the lowpass case, the poles and zeros below the real axis are 
ignored. So an nth order lowpass prototype transforms into an nth order bandpass, even 
though the filter order will be 2n. An nth order bandpass filter will consist of n sections, 
versus n/2 sections for the lowpass prototype. It may be convenient to think of the 
response as n poles up and n poles down. 
 
The value of QBP is determined by: 

where BW is the bandwidth at some level, typically –3dB. 
  
A transformation algorithm was defined by Geffe ( Reference 16) for converting lowpass 
poles into equivalent bandpass poles. 
 
Given the pole locations of the lowpass prototype: 

and the values of F0 and QBP, the following calculations will result in two sets of values 
for Q and frequencies, FH and FL, which define a pair of bandpass filter sections. 

Observe that the Q of each section will be the same. 
 
The pole frequencies are determined by: 

 
Each pole pair transformation will also result in 2 zeros that will be located at the origin. 
 

QBP =
F0

BW

-α ± jβ

C =  α2 + β2

D =

E =

G =    E2 - 4 D2

Q =

2α
QBP

C
QBP

2 + 4

√
E + G
2 D2√

C =  α2 + β2

D =

E =

G =    E2 - 4 D2

Q =

2α
QBP

C
QBP

2 + 4

√
E + G
2 D2√

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

√
FBP1 = F0

W

M = 

W =  M +    M2 - 1

FBP2 =  W F0

α Q
QBP

α Q
QBP

√√
FBP1 = F0

W
FBP1 = F0
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Eq. 5-47

Eq. 5-48

Eq. 5-49

Eq. 5-50

Eq. 5-51

Eq. 5-52

Eq. 5-53

Eq. 5-54

Eq. 5-55

Eq. 5-56
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A normalized lowpass real pole with a magnitude of α0 is transformed into a bandpass 
section where: 

and the frequency is F0. 
 
Each single pole transformation will also result in a zero at the origin. 
 
Elliptical function lowpass prototypes contain zeros as well as poles. In transforming the 
filter the zeros must be transformed as well. Given the lowpass zeros at ± jωZ , the 
bandpass zeros are obtained as follows: 

 
Since the gain of a bandpass filter peaks at FBP instead of F0, an adjustment in the 
amplitude function is required to normalize the response of the aggregate filter. The gain 
of the individual filter section is given by: 

where: 
   A0 = gain a filter center frequency 
   AR = filter section gain at resonance 
   F0 = filter center frequency 
   FBP = filter section resonant frequency. 
 
Again using a 3 pole 1dB Chebychev as an example: 

A 3 dB bandwidth of 0.5Hz. with a center frequency of 1Hz. is arbitrarily assigned. Then: 
 

QBP = 2 

Q = 
QBP
α0

M = 

W =  M +    M2 - 1

FBP1 =

FBP2 =  W F0

α Q
QBP

√ 
F0
W

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

AR = A0 1 + Q2 F0
FBP

FBP
F0

-( )√
2

AR = A0 1 + Q2 F0
FBP

FBP
F0

-( )F0
FBP

FBP
F0

-F0
FBP

FBP
F0

-( )√
2

Eq. 5-58

Eq. 5-59

Eq. 5-60

Eq. 5-61

Eq. 5-62

Eq. 5-63
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Going through the calculations for the pole pair the intermediate results are: 
 

C = 0.829217          D = 0.2257   
E = 4.207034         G = 4.098611 
M = 1.01894           W = 1.214489 

and: 
            FBP1 = 0.823391      FBP2 = 1.214489 

     QBP1 = QBP2 = 9.029157 
And for the single pole: 

      FBP3 = 1       QBP3 = 4.431642 
 
Again a full example will be worked out in a later section. 

 
 

Lowpass to Bandreject (Notch) 
 
As in the bandpass case, a bandreject filter can be either wideband or narrowband, 
depending on whether or not the poles are separated by 2 octaves or more. To avoid 
confusion, the following convention will be adopted. If the filter is wideband, it will be 
referred to as a bandreject filter. A narrowband filter will be referred to as a notch filter.  
 
One way to build a notch filter is to construct it as a bandpass filter whose output is 
subtracted from the input (1 – BP). Another way is with cascaded lowpass and highpass 
sections, especially for the bandreject (wideband) case. In this case, the sections are in 
parallel, and the output is the difference.  
 
Just as the bandpass case is a direct transformation of the lowpass prototype, where DC is 
transformed to F0, the notch filter can be first transformed to the highpass case, and then 
DC, which is now a zero, is transformed to F0. 
 
A more general approach would be to convert the poles directly. A notch transformation 
results in two pairs of complex poles and a pair of second order imaginary zeros from 
each lowpass pole pair. 
 
First, the value of QBR is determined by: 

where BW is the bandwidth at – 3dB. 
  
Given the pole locations of the lowpass prototype 
 

-α ± jβ  

QBR =
F0

BW
Eq. 5-64

Eq. 5-65
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and the values of F0 and QBR, the following calculations will result in two sets of values 
for Q and frequencies, FH and FL, which define a pair of notch filter sections. 

 
The pole frequencies are given by: 

 
where F0 is the notch frequency and the geometric mean of FBR1 and FBR2. 
 
A simple real pole, α0, transforms to a single section having a Q given by: 

with a frequency FBR = F0. There will also be transmission zero at F0. 
 
In some instances, such as the elimination of the power line frequency (hum) from low 
level sensor measurements, a notch filter for a specific frequency may be designed.  
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D =
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G =             +               + D2 E2
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α
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2 √

K
D + H

Q = QBR α0
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Eq. 5-66

Eq. 5-67
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Assuming that an attenuation of A dB is required over a bandwidth of B, then the 
required Q is determined by: 

 
 A 3 pole 1 dB Chebychev is again used as an example: 

 
A 3dB bandwidth of 0.1 Hz. with a center frequency of 1Hz. is arbitrarily assigned.  
Then: 

QBR = 10 
 
Going through the calculations for the pole pair yields the intermediate results: 
 

C = 0.829217          D = 0.027218   
E = 0.106389         F = 4.079171 
G = 2.019696          H = 0.001434 
                K = 1.063139 

and 
            FBR1 = 0.94061       FBR2 = 1.063139 

     QBR1 = QBR2 = 37.10499 
 
and for the single pole 

      FBP3 = 1       QBP3 = 4.431642 
 
Once again a full example will be worked out in a later section. 

 
Lowpass to Allpass 
 
The transformation from lowpass to allpass involves adding a zero in the right hand side 
of the s plane corresponding to each pole in the left hand side.  
 
In general, however, the allpass filter is usually not designed in this manner. The main 
purpose of the allpass filter is to equalize the delay of another filter. Many modulation 
schemes in communications use some form or another of quadrature modulation, which 
processes both the amplitude and phase of the signal.  
 
Allpass filters add delay to flatten the delay curve without changing the amplitude. In 
most cases a closed form of the equalizer is not available. Instead the amplitude filter is 
designed and the delay calculated or measured. Then graphical means or computer 
programs are used to figure out the required sections of equalization. 

ω0

B    10.1 A  - 1√
Q =

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

αLP1 =
βLP1 =
αLP2 =

.2257

.8822

.4513

Eq. 5-79
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Each section of  the equalizer gives twice the delay of the lowpass prototype due to the 
interaction of the zeros. A rough estimate of the required number of sections is given by: 
 

n = 2 ∆BW ∆T + 1  
 
Where ∆BW  is the bandwidth of interest in hertz and ∆T is the delay distortion over  ∆BW  
in seconds.  
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SECTION 5-6: FILTER REALIZATIONS 
 
Now that it has been decided what to build, it now must be decided how to build it. That 
means that it is necessary to decide which of the filter topologies to use. Filter design is a 
two step process where it is determined what is to be built (the filter transfer function) 
and then how to build it (the topology used for the circuit).  
 
In general, filters are built out of one-pole sections for real poles, and two-pole sections 
for pole pairs. While you can build a filter out of three-pole, or higher order sections, the 
interaction between the sections increases, and therefore, component sensitivities go up.  
 
It is better to use buffers to isolate the various sections. In addition, it is assumed that all 
filter sections are driven from a low impedance source. Any source impedance can be 
modeled as being in series with the filter input. 
 
In all of the design equation figures the following convention will be used: 
   

H = circuit gain in the passband or at resonance 
  F0 = cutoff or resonant frequency in Hertz 
  ω0 = cutoff or resonant frequency in radians/sec. 
  Q = circuit “quality factor”. Indicates circuit peaking. 
  α = 1/Q = damping ratio 
 
It is unfortunate that the symbol α is used for damping ratio. It is not the same as the α 
that is used to denote pole locations (α ± jβ). The same issue occurs for Q. It is used for 
the circuit quality factor and also the component quality factor, which are not the same 
thing.  
 
The circuit Q is the amount of peaking in the circuit. This is a function of the angle of the 
pole to the origin in the s plane. The component Q is the amount of losses in what should 
be lossless reactances. These losses are the parasitics of the components; dissipation 
factor, leakage resistance, ESR (equivalent series resistance), etc. in capacitors and series 
resistance and parasitic capacitances in inductors.  
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Single Pole RC  
 
The simplest filter building block is the passive RC section. The single pole can be either 
lowpass or highpass. Odd order filters will have a single pole section. 
  
The basic form of the lowpass RC section is shown in Figure 5-37(A). It is assumed that 
the load impedance is high (> ×10), so that there is no loading of the circuit. The load will 
be in parallel with the shunt arm of the filter. If this is not the case, the section will have 
to be buffered with an op amp. A lowpass filter can be transformed to a highpass filter by 
exchanging the resistor and the capacitor. The basic form of the highpass filter is shown 
in Figure 5-37(B). Again it is assumed that load impedance is high. 

Figure 5-37: Single pole sections 
The pole can also be incorporated into an amplifier circuit. Figure 5-38(A) shows an 
amplifier circuit with a capacitor in the feedback loop. This forms a lowpass filter since 
as frequency is increased, the effective feedback impedance decreases, which causes the 
gain to decrease. 
 

Figure 5-38: Single pole active filter blocks 
 
Figure 5-38(B) shows a capacitor in series with the input resistor. This causes the signal 
to be blocked at DC. As the frequency is increased from DC, the impedance of the 
capacitor decreases and the gain of the circuit increases. This is a highpass filter.   
    
The design equations for single pole filters appear in Figure 5-66. 
 

(A)
LOWPASS

(B)
HIGHPASS

+

- +

-

(A)
LOWPASS

(B)
HIGHPASS
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Passive LC Section 
  
While not strictly a function that uses op amps, passive filters form the basis of several 
active filters topologies and are included here for completeness.       
      
As in active filters, passive filters are built up of individual subsections. Figure 5-39 
shows lowpass filter sections. The full section is the basic two pole section. Odd order 
filters use one half section which is a single pole section. The m derived sections, shown 
in Figure 5-40, are used in designs requiring transmission zeros as well as poles.  

 

Figure 5-39: Passive filter blocks (lowpass) 

 
 

 

Figure 5-40: Passive filter blocks (lowpass m-derived) 
           
 
A lowpass filter can be transformed into a highpass (see Figures 5-41 and 5-42) by simply 
replacing capacitors with inductors with reciprocal values and vise versa so: 

and 

CHP = 1
LLP

CHP = 1
LLP

LHP =
1

CLP
LHP =

1
CLP

Eq. 5-80

Eq. 5-81

(A)
HALF SECTION

(B)
FULL SECTION

(A)
HALF SECTION

(B)
FULL SECTION



  OP AMP APPLICATIONS 

5.62 

Transmission zeros are also reciprocated in the transformation so: 

Figure 5-41: Passive filter blocks (highpass) 

 

Figure 5-42: Passive filter blocks (highpass m-derived) 
The lowpass prototype is transformed to bandpass and bandreject filters as well by using 
the table in Figure 5-43. 
            
For a passive filter to operate, the source and load impedances must be specified. One 
issue with designing passive filters is that in multipole filters each section is the load for 
the preceding sections and also the source impedance for subsequent sections, so 
component interaction is a major concern. Because of this, designers typically make use 
of tables, such as in Williams's book (Reference 2).   
             

ω Z ,HP =
1

ω Z ,LP
ω Z ,HP =

1
ω Z ,LP

Eq. 5-82
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Figure 5-43: Lowpass → bandpass and highpass → bandreject  transformation 
     
Integrator 
 
Any time that you put a frequency-dependent impedance in a feedback network the 
inverse frequency response is obtained. For example, if a capacitor, which has a 
frequency dependent impedance that decreases with increasing frequency, is put in the 
feedback network of an op amp, an integrator is formed, as in Figure 5-44.  

 

Figure 5-44: Integrator 
The integrator has high gain (i.e. the open loop gain of the op amp) at DC. An integrator 
can also be thought of as a low pass filter with a cutoff frequency of 0Hz.  
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General Impedance Converter 
 
Figure 5-45 is the block diagram of a general impedance converter. The impedance of this 
circuit is: 

    
By substituting one or two capacitors into appropriate locations (the other locations being  
resistors), several impedances can be synthesized (see Reference 25). 
 
One limitation of this configuration is that the lower end of the structure must be 
grounded. 

 

Figure 5-45: General impedance converter 
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Active Inductor 
 
Substituting a capacitor for Z4 and resistors for Z1, Z2, Z3 & Z5 in the GIC results in an 
impedance given by: 

 
By inspection it can be shown that this is an inductor with a value of: 

This is just one way to simulate an inductor as shown in Figure 5-46. 

Figure 5-46: Active inductor 
 

C R1 R3 R5
R2L =

C R1 R3 R5
R2L =
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Eq. 5-85
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Frequency Dependent Negative Resistor (FDNR) 
 
By substituting capacitors for two of the Z1, Z3 or Z5 elements, a structure known as a 
frequency dependant negative resistance (FDNR) is generated. The impedance of this 
structure is: 

 
This impedance, which is called a D element, has the value: 

assuming     
C1 = C2 and R2 = R5. 

 
The three possible versions of the FDNR are shown in Figure 5-47.  
 

 

Figure 5-47: Frequency dependent negative resistor blocks 
There is theoretically no difference in these three blocks, and so they should be 
interchangeable. In practice though there may be some differences. Circuit (a) is 
sometimes preferred because it is the only block to provide a return path for the amplifier 
bias currents.  
 
For the FDNR filter (see Reference 24), the passive realization of the filter is used as the 
basis of the design. As in the passive filter, the FDNR filter must then be denormalized 
for frequency and impedance. This is typically done before the conversion by 1/s. First 
take the denormalized passive prototype filter and transform the elements by 1/s. This 
means that inductors, whose impedance is equal to sL, transform into a resistor with an 
impedance of L. A resistor of value R becomes a capacitor with an impedance of R/s; and 
a capacitor of impedance 1/sC transforms into a frequency dependent resistor, D, with an 

sC2 R2 R4
R5

Z11 = sC2 R2 R4
R5

Z11 =

C2 R4D = C2 R4D =

Eq. 5-86 

Eq. 5-87 

Eq. 5-88 
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impedance of 1/s2C. The transformations involved with the FDNR configuration and the 
GIC implementation of the D element are shown in Figure 5-48. We can apply this 
transformation to lowpass, highpass, bandpass or notch filters, remembering that the 
FDNR block must be restricted to shunt arms. 
 

 

Figure 5-48: 1/s transformation 
A worked out example of the FDNR filter is included in the next section. 
 
A perceived advantage of the FDNR filter in some circles is that there are no op amps in 
the direct signal path, which can add noise and/or distortion, however small, to the signal. 
It is also relatively insensitive to component variation. These advantages of the FDNR 
come at the expense of an increase in the number of components required.  
 
Sallen-Key 
 
The Sallen-Key configuration, also known as a voltage control voltage source (VCVS), 
was first introduced in 1955 by R. P. Sallen and E. L. Key of MIT’s Lincoln Labs (see 
Reference 14). It is one of the most widely used filter topologies and is shown in Figure 
5-49. One reason for this popularity is that this configuration shows the least dependence 
of filter performance on the performance of the op amp. This is due to the fact that the op 
amp is configured as an amplifier, as opposed to an integrator, which minimizes the gain-
bandwidth requirements of the op amp. This infers that for a given op amp, you will be 
able to design a higher frequency filter than with other topologies since the op amp gain 
bandwidth product will not limit the performance of the filter as it would if it were 
configured as an integrator. The signal phase through the filter is maintained 
(noninverting configuration).  
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Another advantage of this configuration is that the ratio of the largest resistor value to the 
smallest resistor value and the ratio of the largest capacitor value to the smallest capacitor 
value (component spread) are low, which is good for manufacturability. The frequency 
and Q terms are somewhat independent, but they are very sensitive to the gain parameter. 
The Sallen-Key is very Q-sensitive to element values, especially for high Q sections. The 
design equations for the Sallen-Key low pass are shown in Figure 5-67.  

Figure 5-49: Sallen-Key lowpass filter 
There is a special case of the Sallen–Key lowpass filter. If the gain is set to 2, the 
capacitor values, as well as the resistor values, will be the same. 
 
While the Sallen–Key filter is widely used, a serious drawback is that the filter is not 
easily tuned, due to interaction of the component values on F0 and Q.  
 
To transform the low pass into the highpass we simply exchange the capacitors and the 
resistors in the frequency determining network (i.e., not the op amp gain resistors). This is 
shown in Figure 5-50 (opposite). The comments regarding sensitivity of the filter given 
above for the low pass case apply to the high pass case as well. The design equations for 
the Sallen-Key high pass are shown in Figure 5-68. 
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The bandpass case of the Sallen–Key filter has a limitation (see Figure 5-51 below). The 
value of Q will determine the gain of the filter, i.e., it can not be set independent, as in the 
lowpass or highpass cases. The design equations for the Sallen-Key bandpass are shown 
in Figure 5-69. 

Figure 5-50: Sallen-Key highpass filter  

Figure 5-51: Sallen-Key bandpass filter 
A Sallen–Key notch filter may also be constructed, but it has a large number of 
undesirable characteristics. The resonant frequency, or the notch frequency, can not be 
adjusted easily due to component interaction. As in the bandpass case, the section gain is 
fixed by the other design parameters, and there is a wide spread in component values, 
especially capacitors. Because of this and the availability of easier to use circuits, it is not 
covered here. 
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Multiple Feedback 
 
The multiple feedback filter uses an op amp as an integrator as shown in Figure 5-52 
below. Therefore, the dependence of the transfer function on the op amp parameters is 
greater than in the Sallen-Key realization. It is hard to generate high Q, high frequency 
sections due to the limitations of the open loop gain of the op amp. A rule of thumb is 
that the open loop gain of the op amp should be at least 20dB (×10) above the amplitude 
response at the resonant (or cutoff) frequency, including the peaking caused by the Q of 
the filter. The peaking due to Q will cause an amplitude, A0: 

where H is the gain of the circuit. The multiple feedback filter will invert the phase of the 
signal. This is equivalent to adding the resulting 180° phase shift to the phase shift of the 
filter itself. 

Figure 5-52: Multiple feedback lowpass 
The maximum to minimum component value ratios is higher in the multiple feedback 
case than in the Sallen-Key realization.  The design equations for the multiple feedback 
lowpass are given in Figure 5-70. 
 
Comments made about the multiple feedback low pass case apply to the highpass case as  
well (see Figure 5-53 opposite). Note that we again swap resistors and capacitors to 
convert the lowpass case to the highpass case. The design equations for the multiple 
feedback highpass are given in Figure 5-71. 
 
The design equations for the multiple feedback bandpass case (see Figure 5-54 opposite) 
are given in Figure 5-72. 
 
This circuit is widely used in low Q (< 20) applications. It allows some tuning of the 
resonant frequency, F0, by making R2 variable. Q can be adjusted (with R5) as well, but 
this will also change F0.  

A0 = H Q Eq. 5-89 
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Tuning of F0 can be accomplished by monitoring the output of the filter with the 
horizontal channel of an oscilloscope, with the input to the filter connected to the vertical 
channel. The display will be a Lissajous pattern. This pattern will be an ellipse that will 
collapse to a straight line at resonance, since the phase shift will be 180°. You could also 
adjust the output for maximum output, which will also occur at resonance, but this is 
usually not as precise, especially at lower values of Q where there is a less pronounced 
peak. 

Figure 5-53: Multiple feedback highpass 

Figure 5-54: Multiple feedback bandpass 
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State Variable 
 
The state-variable realization (see Reference 11) is shown in Figure 5-55, along with the 
design equations in Figure 5-73. This configuration offers the most precise 
implementation, at the expense of many more circuit elements. All three major 
parameters (gain, Q & ω0) can be adjusted independently, and lowpass, highpass, and 
bandpass outputs are available simultaneously. Note that the lowpass and highpass 
outputs are inverted in phase while the bandpass output maintains the phase. The gain of 
each of the outputs of the filter is also independently variable. With an added amplifier 
section summing the low pass and highpass sections the notch function can also be 
synthesized. By changing the ratio of the summed sections, lowpass notch, standard notch 
and highpass notch functions can be realized.  A standard notch may also be realized by 
subtracting the bandpass output from the input with the added op amp section. An allpass 
filter may also be built with the four amplifier configuration by subtracting the bandpass 
output from the input. In this instance, the bandpass gain must equal 2. 

Figure 5-55: State variable filter 
Since all parameters of the state variable filter can be adjusted independently, component 
spread can be minimized. Also, variations due to temperature and component tolerances 
are minimized. The op amps used in the integrator sections will have the same limitations 
on op amp gain-bandwidth as described in the multiple feedback section. 
 
Tuning the resonant frequency of a state variable filter is accomplished by varying R4 and 
R5. While you don’t have to tune both, if you are varying over a wide range it is generally 
preferable. Holding R1 constant, tuning R2 sets the lowpass gain and tuning R3 sets the 
highpass gain. Bandpass gain and Q are set by the ratio of R6 & R7.  
 
Since the parameters of a state variable filter are independent and tunable, it is easy to add 
electronic control of frequency, Q and ω0. This adjustment is accomplished by using an 
analog multiplier, multiplying DACs (MDACs) or digital pots, as shown in one of the 
examples in a later section.  For the integrator sections adding the analog multiplier or 
MDAC effectively increases the time constant by dividing the voltage driving the resistor, 
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which, in turn, provides the charging current for the integrator capacitor. This in effect 
raises the resistance and, in turn, the time constant. The Q and gain can be varied by 
changing the ratio of the various feedback paths. A digital pot will accomplish the same 
feat in a more direct manner, by directly changing the resistance value. The resultant 
tunable filter offers a great deal of utility in measurement and control circuitry. A worked 
out example is given in Section 8 of this chapter. 
 
Biquadratic (Biquad) 
 
A close cousin of the state variable filter is the biquad as shown in Figure 5-56. The name 
of this circuit was first used by J. Tow in 1968 (Reference 11) and later by L. C. Thomas 
in 1971 (see Reference 12). The name derives from the fact that the transfer function is a 
quadratic function in both the numerator and the denominator. Hence the transfer 
function is a biquadratic function. This circuit is a slight rearrangement of the state 
variable circuit. One significant difference is that there is not a separate highpass output. 
The bandpass output inverts the phase. There are two lowpass outputs, one in phase and 
one out of phase. With the addition of a fourth amplifier section, highpass, notch 
(lowpass, standard and highpass) and allpass filters can be realized. The design equations 
for the biquad are given in Figure 5-74. 
 

Figure 5-56: Biquad filter 
Referring to Figure 5-74, the allpass case of the biquad, R8 = R9/2 and R7 = R9. This is 
required to make the terms in the transfer function line up correctly. For the highpass 
output, the input, bandpass and second lowpass outputs are summed. In this case the 
constraints are that R1 = R2 = R3 and R7 = R8 = R9.  
 
Like the state variable, the biquad filter is tunable. Adjusting R3 will adjust the Q. 
Adjusting R4 will set the resonant frequency. Adjusting R1 will set the gain. Frequency 
would generally be adjusted first followed by Q and then gain. Setting the parameters in 
this manner minimizes the effects of component value interaction. 
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Dual Amplifier Bandpass (DAPB) 
 
The Dual Amplifier bandpass filter structure is useful in designs requiring high Qs and 
high frequencies. Its component sensitivity is small, and the element spread is low. A 
useful feature of this circuit is that the Q and resonant frequency can be adjusted more or 
less independently.  
 
Referring to Figure 5-57 below, the resonant frequency can be adjusted by R2. R1 can 
then be adjusted for Q. In this topology it is useful to use dual op amps. The match of the 
two op amps will lower the sensitivity of Q to the amplifier parameters. 
 

Figure 5-57: Dual amplifier bandpass filter 
It should be noted that the DABP has a gain of 2 at resonance. If lower gain is required, 
resistor R1 may be split to form a voltage divider. This is reflected in the addendum to the 
design equations of the DABP, Figure 5-75. 
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Twin T Notch 
 
The twin T is widely used as a general purpose notch circuit as shown in Figure 5-58. The 
passive implementation of the twin T (i.e. with no feedback) has a major shortcoming of 
having a Q that is fixed  at 0.25. This issue can be rectified with the application of 
positive feedback to the reference node. The amount of the signal feedback, set by the 
R4/R5 ratio, will determine the value of Q of the circuit, which, in turn, determines the 
notch depth. For maximum notch depth, the resistors R4 and R5 and the associated op 
amp can be eliminated. In this case, the junction of C3 and R3 will be directly connected 
to the output.  

Figure 5-58: Twin-T notch filter 
Tuning is not easily accomplished. Using standard 1% components a 60dB notch is as 
good as can be expected, with 40 –50dB being more typical. 
 
The design equations for the Twin T are given in Figure 5-76. 
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Bainter Notch 
 
A simple notch filter is the Bainter circuit (see Reference 21). It is composed of simple 
circuit blocks with two feedback loops as shown in Figure 5-59. Also, the component 
sensitivity is very low.  
 
This circuit has several interesting properties. The Q of the notch is not based on 
component matching as it is in every other implementation, but is instead only dependant 
on the gain of the amplifiers. Therefore, the notch depth will not drift with temperature, 
aging and other environmental factors. The notch frequency may shift, but not the depth.  

Figure 5-59: Bainter notch filter  

Amplifier open loop gain of 104 will yield a Qz of > 200. It is capable of orthogonal 
tuning with minimal interaction. R6 tunes Q and R1 tunes ωZ. Varying R3 sets the ratio of 
ω0/ωZ produces lowpass notch (R4 > R3), notch (R4 = R3) or highpass notch (R4 < R3).  
 
The design equations of the Bainter circuit are given in Figure 5-77. 
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Boctor Notch 
 
The Boctor circuits (see References 22, 23), while moderately complicated, uses only one 
op amp. Due to the number of components, there is a great deal of latitude in component 
selection. These circuits also offer low sensitivity and the ability to tune the various 
parameters more or less independently.  

Figure 5-60: Boctor lowpass notch filter 
There are two forms, a lowpass notch (Figure 5-60 above) and a highpass notch (Figure 
5-61 below). For the lowpass case, the preferred order of adjustment is to tune ω0 with 
R4, then Q0 with R2, next Qz with R3 and finally ωz with R1. 

Figure 5-61: Boctor highpass filter 
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In order for the components to be realizable we must define a variable, k1, such that: 
 

The design equations are given in Figure 5-78 for the lowpass case and in Figure 5-79 for 
the highpass case. 
 
In the highpass case circuit gain is require and it applies only when 

but a highpass notch can be realized with one amplifier and only 2 capacitors, which can 
be the same value. The pole and zero frequencies are completely independent of the 
amplifier gain. The resistors can be trimmed so that even 5% capacitors can be used. 
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"1 – Bandpass" Notch 
 
As mentioned in the state variable and biquad sections, a notch filter can be built as 
1 - BP. The bandpass section can be any of the all pole bandpass realizations discussed 
above, or any others. Keep in mind whether the bandpass section is inverting as shown in 
Figure 5-62 (such as the multiple feedback circuit) or non-inverting as shown in 
Figure 5-63 (such as the Sallen-Key), since we want to subtract, not add, the bandpass 
output from the input. 
 

Figure 5-62: 1 − BP filter for inverting bandpass configurations 

Figure 5-63: 1 − BP filter for noninverting bandpass configurations 
It should be noted that the gain of the bandpass amplifier must be taken into account in 
determining the resistor values. Unity gain bandpass would yield equal values. 
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First Order Allpass 
 
The general form of a first order allpass filter is shown in Figure 5-64.  If the function is a 
simple RC highpass (Figure 5-64A), the circuit will have a have a phase shift that goes 
from -180° at 0Hz. and 0°at high frequency. It will be -90° at ω = 1/RC. The resistor may 
be made variable to allow adjustment of the delay at a particular frequency. 

Figure 5-64: First order allpass filters 
If the function is changed to a lowpass function (Figure 5-64B), the filter is still a first 
order allpass and the delay equations still hold, but the signal is inverted, changing from 
0° at DC to −180° at high frequency.  
 
Second Order Allpass 
 
A second order allpass circuit shown in Figure 5-65 was first described by Delyiannis 
(see Reference 17). The main attraction of this circuit is that it only requires one op amp.  
Remember also that an allpass filter can also be realized as 1 – 2BP.  

Figure 5-65: Second order allpass filter  
We may use any of the all pole realizations discussed above to build the filter, but you 
need to be aware of whether the BP inverts the phase or not. We must also be aware that 
the gain of the BP section must be 2. To this end, the DABP structure is particularly 
useful, since its gain is fixed at 2. 
 
Figures 5-66 through 5-81 following summarize design equations for various active filter 
realizations. In all cases, H, ωo, Q, and α are given, being taken from the design tables.  
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Figure 5-66: Single pole filter design equations 
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Figure 5-67: Sallen-Key lowpass design equations
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Figure 5-68: Sallen-Key highpass design equations 
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Figure 5-69: Sallen-Key bandpass design equations 
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Figure 5-70: Multiple feedback lowpass design equations 
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Figure 5-71: Multiple feedback highpass design equations 
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Figure 5-72: Multiple feedback bandpass design equations 
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Figure 5-73A: State variable design equations 
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Figure 5-73B: State variable design equations 
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Figure 7-73C: State variable design equations 
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Figure 5-74A: Biquad design equations 
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Figure 5-74B: Biquad design equations 
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Figure 5-75: Dual amplifier bandpass design equations 
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Figure 5-76: Twin-T notch design equations 
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Figure 5-77: Bainter notch 
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Figure 5-78: Boctor notch, lowpass 
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Figure 5-79A: Boctor highpass design equations 
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Figure 5-79-B: Boctor highpass design equations (continued) 
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Figure 5-80: First order allpass design equations 
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Figure 5-81: Second order allpass
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SECTION 5-7: PRACTICAL PROBLEMS IN FILTER 
IMPLEMENTATION 
 
In the previous sections filters were dealt with as mathematical functions. The filter 
designs were assumed to have been implemented with "perfect" components. When the 
filter is built with real-world components design tradeoffs must typically be made. 
 
In building a filter with an order greater the two, multiple second and/or first order 
sections are used. The frequencies and Qs of these sections must align precisely or the 
overall response of the filter will be affected. For example, the antialiasing filter design 
example in the next section is a 5th order Butterworth filter, made up of a second order 
section with a frequency (Fo) = 1 and a   Q = 1.618, a second order section with a 
frequency (Fo) = 1 and a Q = 0.618, and a first order section with a frequency (Fo) = 1 
(for a filter normalized to 1 rad/sec). If the Q or frequency response of any of the sections 
is off slightly, the overall response will deviate from the desired response. It may be 
close, but it won't be exact. As is typically the case with engineering, a decision must be 
made as to what tradeoffs should be made. For instance, do we really need a particular 
response exactly?  Is there a problem if there is a little more ripple in the passband? Or if 
the cutoff frequency is at a slightly different frequency?  These are the types of questions 
that face a designer, and will vary from design to design. 
 
Passive Components (Resistors, Capacitors, Inductors) 
 
Passive components are the first problem. When designing filters, the calculated values of 
components will most likely not available commercially. Resistors, capacitors, and 
inductors come in standard values. While custom values can be ordered, the practical 
tolerance will probably still be ± 1% at best. An alternative is to build the required value 
out of a series and/or parallel combination of standard values. This increases the cost and 
size of the filter. Not only is the cost of components increased, so are the manufacturing 
costs, both for loading and tuning the filter. Furthermore, success will be still limited by 
the number of parts that are used, their tolerance, and their tracking, both over 
temperature and time.  
 
A more practical way is to use a circuit analysis program to determine the response using 
standard values. The program can also evaluate the effects of component drift over 
temperature. The values of the sensitive components are adjusted using parallel 
combinations where needed, until the response is within the desired limits. Many of the 
higher end filter CAD programs include this feature. 
 
The resonant frequency and Q of a filter are typically determined by the component 
values. Obviously, if the component value is drifting, the frequency and the Q of the filter 
will drift which, in turn, will cause the frequency response to vary. This is especially true 
in higher order filters.  
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Higher order implies higher Q sections. Higher Q sections means that component values 
are more critical, since the Q is typically set by the ratio of two or more components, 
typically capacitors.  
 
In addition to the initial tolerance of the components, you must also evaluate effects of 
temperature/time drift. The temperature coefficients of the various components may be 
different in both magnitude and sign.  Capacitors, especially, are difficult in that not only 
do they drift, but the temperature coefficient (TC) is also a function of temperature, as 
shown in Figure 5-82. This represents the temperature coefficient of a (relatively) poor 
film capacitor, which might be typical for a Polyester or Polycarbonate type. Linear TC in 
film capacitors can be found in the polystyrene, polypropylene, and Teflon dielectrics. In 
these types TC is on the order of 100-200ppm/°C, and if necessary, this can be 
compensated with a complementary TC elsewhere in the circuit. 

Figure 5-82: A poor film capacitor temperature coefficient  
The lowest TC dielectrics are NPO (or COG) ceramic (±30ppm/°C), and polystyrene  
(–120ppm/°C). Some capacitors, mainly the plastic film types, such as polystyrene and  
polypropylene, also have a limited temperature range. 
 
While there is infinite choice of the values of the passive components for building filters, 
in practice there are physical limits. Capacitor values below 10pF and above 10µF are not 
practical. Electrolytic capacitors should be avoided. Electrolytic capacitors are typically 
very leaky. A further potential problem is if they are operated without a polarizing 
voltage, they become non-linear when the AC voltage reverse biases them. Even with a 
DC polarizing voltage, the AC signal can reduce the instantaneous voltage to 0V or 
below. Large values of film capacitors are physically very large.  
 
Resistor values of less than 100Ω should be avoided, as should values over 1MΩ. Very 
low resistance values (under 100Ω) can require a great deal of drive current and dissipate 
a great deal of power. Both of these should be avoided. And low values and very large 
values of resistors may not be as readily available. Very large values tend to be more 
prone to parasitics since smaller capacitances will couple more easily into larger 
impedance levels. Noise also increases with the square root of the resistor value. Larger 
value resistors also will cause larger offsets due to the effects of the amplifier bias 
currents. 
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Parasitic capacitances due to circuit layout and other sources affect the performance of the 
circuit. They can form between two traces on a PC board (on the same side or opposite 
side of the board), between leads of adjacent components, and just about everything else 
you can (and in most cases can't) think of. These capacitances are usually small, so their 
effect is greater at high impedance nodes. Thus, they can be controlled most of the time 
by keeping the impedance of the circuits down. Remember that the effects of stray 
capacitance are frequency dependent, being worse at high frequencies because the 
impedance drops with increasing frequency.  
 

Parasitics are not just associated with outside sources. They are also present in the 
components themselves.  
 

A capacitor is more than just a capacitor in most instances. A real capacitor has 
inductance (from the leads and other sources) and resistance as shown in Figure 5-83. 
This resistance shows up in the specifications as leakage and poor power factor. 
Obviously, we would like capacitors with very low leakage and good power factor (see 
Figure 5-84). 
 

In general, it is best to use plastic film (preferably Teflon or polystyrene) or mica 
capacitors and metal film resistors, both of moderate to low values in our filters.  

Figure 5-83: Capacitor equivalent circuit 
One way to reduce component parasitics is to use surface mounted devices. Not having 
leads means that the lead inductance is reduced. Also, being physically smaller allows 
more optimal placement. A disadvantage is that not all types of capacitors are available in 
surface mount. Ceramic capacitors are popular surface mount types, and of these, the 
NPO family has the best characteristics for filtering. Ceramic capacitors may also be 
prone to microphonics. Microphonics occurs when the capacitor turns into a motion 
sensor, similar to a strain gauge, and turns vibration into an electrical signal, which is a 
form of noise. 

IDEAL CAPACITOR

MOST GENERAL MODEL OF A REAL CAPACITOR

LEAKAGE CURRENT MODEL HIGH FREQUENCY MODEL

HIGH CURRENT MODEL DIELECTRIC ABSORPTION (DA) MODEL
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CAPACITOR COMPARISON CHART 
 
TYPE TYPICAL DA 

 
ADVANTAGES DISADVANTAGES 

Polystyrene 0.001%  
to 
0.02% 

Inexpensive 
Low DA  
Good stability 
(~120ppm/°C) 
 

Damaged by temperature > +85°C 
Large  
High inductance 
Vendors limited 

Polypropylene 0.001% 
to 
0.02% 

Inexpensive 
Low DA  
Stable (~200ppm/°C) 
Wide range of values 
 

Damaged by temperature > +105°C 
Large 
High inductance 
 

Teflon 0.003% 
to 
0.02% 

Low DA available 
Good stability 
Operational above +125 °C 
Wide range of values 
 

Expensive 
Large 
High inductance 

Polycarbonate 0.1% Good stability 
Low cost 
Wide temperature range 
Wide range of values 
 

Large 
DA limits to 8-bit applications 
High inductance 

Polyester 0.3% 
to 
0.5% 

Moderate stability 
Low cost  
Wide temperature range 
Low inductance (stacked  
film) 
 

Large 
DA limits to 8-bit applications 
High inductance (conventional) 

NP0 Ceramic <0.1% Small case size 
Inexpensive, many vendors 
Good stability (30ppm/°C) 
1% values available 
Low inductance (chip) 
 

DA generally low (may not be 
specified) 
Low maximum values (≤ 10nF) 

Monolithic 
Ceramic 
(High K) 

>0.2% Low inductance (chip) 
Wide range of values 
 

Poor stability 
Poor DA 
High voltage coefficient 
 

Mica >0.003% Low  loss at HF 
Low inductance 
Good stability 
1% values available 
 

Quite large 
Low maximum values (≤ 10nF) 
Expensive 

Aluminum 
Electrolytic 

Very high Large values 
High currents  
High voltages 
Small size 

High leakage 
Usually polarized 
Poor stability, accuracy 
Inductive 
 

Tantalum 
Electrolytic 

Very high Small size 
Large values 
Medium inductance 
 

High leakage 
Usually polarized 
Expensive 
Poor stability, accuracy 

Figure 5-84: Capacitor comparison chart 
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RESISTOR COMPARISON CHART 
 
 TYPE ADVANTAGES DISADVANTAGES 

    
DISCRETE Carbon  

Composition 
Lowest Cost 
High Power/Small Case Size 
Wide Range of Values 

Poor Tolerance (5%) 
Poor Temperature Coefficient 
(1500 ppm/°C) 
 

 Wirewound Excellent Tolerance (0.01%) 
Excellent TC (1ppm/°C) 
High Power 

Reactance is a Problem 
Large Case Size 
Most Expensive 
 

 Metal Film Good Tolerance (0.1%) 
Good TC (<1 to 100ppm/°C) 
Moderate Cost 
Wide Range of Values 
Low Voltage Coefficient 
 

Must be Stabilized with Burn-In 
Low Power 

 Bulk Metal or 
Metal Foil 

Excellent Tolerance (to 0.005%) 
Excellent TC (to <1ppm/°C) 
Low Reactance 
Low Voltage Coefficient 
 

Low Power 
Very Expensive 

 High Megohm  Very High Values (108 to 1014Ω) 
Only Choice for Some Circuits 

High Voltage Coefficient 
(200ppm/V) 
Fragile Glass Case (Needs Special  
Handling) 
Expensive 
 

NETWORKS Thick Film Low Cost 
High Power 
Laser-Trimmable 
Readily Available 
 

Fair Matching (0.1%) 
Poor TC (>100ppm/°C) 
Poor Tracking TC (10ppm/°C) 

 Thin Film Good Matching (<0.01%) 
Good TC (<100ppm/°C) 
Good Tracking TC (2ppm/°C) 
Moderate Cost 
Laser-Trimmable 
Low Capacitance 
Suitable for Hybrid IC Substrate 
 

Often Large Geometry 
Limited Values and 
Configurations 

Figure 5-85: Resistor comparison chart 
Resistors also have parasitic inductances due to leads and parasitic capacitance. The 
various qualities of resistors are compared in Figure 5-85. 
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Limitations of Active Elements (Op Amps) in Filters 
 
The active element of the filter will also have a pronounced effect on the response.  
In developing the various topologies (Multiple Feedback, Sallen-Key, State Variable, 
etc.), the active element was always modeled as a "perfect" operational amplifier. That is 
to say it has:  
    1) infinite gain 
    2) infinite input impedance 
    3) zero output impedance 
 
none of which vary with frequency. While amplifiers have improved a great deal over the 
years, this model has not yet been realized. 
 
The most important limitation of the amplifier has to due with its gain variation with 
frequency. All amplifiers are band limited. This is due mainly to the physical limitations 
of the devices with which the amplifier is constructed. Negative feedback theory tells us 
that the response of an amplifier must be first order (– 6dB per octave) when the gain falls 
to unity in order to be stable. To accomplish this, a real pole is usually introduced in the 
amplifier so the gain rolls off to <1 by the time the phase shift reaches 180° (plus some 
phase margin, hopefully). This roll off is equivalent to that of a single pole filter. So in 
simplistic terms, the transfer function of the amplifier is added to the transfer function of 
the filter to give a composite function. How much the frequency dependent nature of the 
op amp affects the filter is dependent on which topology is used as well as the ratio of the 
filter frequency to the amplifier bandwidth.  
 
The Sallen-Key configuration, for instance, is the least dependent on the frequency 
response of the amplifier. All that is required is for the amplifier response to be flat to just 
past the frequency where the attenuation of the filter is below the minimum attenuation 
required. This is because the amplifier is used as a gain block. Beyond cutoff, the 
attenuation of the filter is reduced by the rolloff of the gain of the op amp. This is because 
the output of the amplifier is phase shifted, which results in incomplete nulling when fed 
back to the input. There is also an issue with the output impedance of the amplifier rising 
with frequency as the open loop gain rolls off. This causes the filter to lose attenuation. 
  
The state variable configuration uses the op amps in two modes, as amplifiers and as 
integrators. As amplifiers, the constraint on frequency response is basically the same as 
for the Sallen-Key, which is flat out to the minimum attenuation frequency. As an 
integrator, however, more is required. A good rule of thumb is that the open loop gain of 
the amplifier must be greater than 10 times the closed loop gain (including peaking from 
the Q of the circuit). This should be taken as the absolute minimum requirement. What 
this means is that there must be 20dB loop gain, minimum. Therefore, an op amp with 
10MHz unity gain bandwidth is the minimum required to make a 1MHz integrator. What 
happens is that the effective Q of the circuit increases as loop gain decreases. This 
phenomenon is called Q enhancement. The mechanism for Q enhancement is similar to 
that of slew rate limitation. Without sufficient loop gain, the op amp virtual ground is no 
longer at ground. In other words, the op amp is no longer behaving as an op amp. Because 
of this, the integrator no longer behaves like an integrator.  
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The multiple feedback configuration also places heavy constraints on the active element. 
Q enhancement is a problem in this topology as well. As the loop gain falls, the Q of the 
circuit increases, and the parameters of the filter change. The same rule of thumb as used 
for the integrator also applies to the multiple feedback topology (loop gain should be at 
least 20dB). The filter gain must also be factored into this equation. 

  
In the FDNR realization, the requirements for the op amps are not as clear. To make the 
circuit work, we assume that the op amps will be able to force the input terminals to be 
the same voltage. This implies that the loop gain be a minimum of 20dB at the resonant 
frequency.  
 
Also it is generally considered to be advantageous to have the two op amps in each leg 
matched. This is easily accomplished using dual op amps. It is also a good idea to have 
low bias current devices for the op amps, so FET input op amps should be used, all other 
things being equal. 
 
In addition to the frequency dependent limitations of the op amp, several others of its 
parameters may be important to the filter designer. 
 
One is input impedance. We assume in the "perfect" model that the input impedance is 
infinite. This is required so that the input of the op amp does not load the network around 
it. This means that we probably want to use FET amplifiers with high impedance circuits.  
 
There is also a small frequency dependent term to the input impedance, since the effective 
impedance is the real input impedance multiplied by the loop gain. This usually is not a 
major source of error, since the network impedance of a high frequency filter should be 
low. 
 
Distortion resulting from Input Capacitance Modulation 
 
Another subtle effect can be noticed with FET input amps. The input capacitance of a 
FET changes with the applied voltage. When the amplifier is used in the inverting 
configuration, such as with the multiple feedback configuration, the applied voltage is 
held to 0V. Therefore there is no capacitance modulation. However, when the amplifier is 
used in the non-inverting configuration, such as in the Sallen-Key circuit, this form of 
distortion can exist.  
 
There are two ways to address this issue. The first is to keep the equivalent impedance 
low. The second is to balance the impedance seen by the inputs. This is accomplished by 
adding a network into the feedback leg of the amplifier which is equal to the equivalent 
input impedance. Note that this will only work for a unity gain application. 
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As an example, which is taken from the OP176 data sheet, a 1kHz highpass Sallen-Key 
filter is shown (Figure 5-86). Figure 5-87 shows the distortion for the uncompensated 
version (curve A1) as well as with the compensation (curve A2). Also shown is the same 
circuit with the impedances scaled up by a factor of 10 (B1 uncompensated, B2 
compensated). Note that the compensation improves the distortion, but not as much as 
having low impedance to start with.  

Figure 5-86: Compensation for input capacitance voltage modulation 

Figure 5-87: Distortion due to input capacitance modulation 
Similarly, the op amp output impedance affects the response of the filter. The output 
impedance of the amplifier is divided by the loop gain, therefore the output impedance 
will rise with increasing frequency. This may have an effect with high frequency filters if 
the output impedance of the stage driving the filter becomes a significant portion of the 
network impedance.  
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The fall of loop gain with frequency can also affect the distortion of the op amp, since 
there is less loop gain available for correction. In the multiple feedback configuration the  
feedback loop is also frequency dependent, which may further reduce the feedback 
correction, resulting in increased distortion. This effect is counteracted somewhat by the 
reduction of distortion components in the filter network (assuming a lowpass or bandpass 
filter).  
 
All of the discussion so far is based on using classical voltage feedback op amps. Current 
feedback, or transimpedance, op amps offer improved high frequency response, but are 
unusable in any topologies discussed except the Sallen-Key. The problem is that 
capacitance in the feedback loop of a current feedback amplifier usually causes it to 
become unstable. Also, most current feedback amplifiers will only drive a small 
capacitive load. Therefore, it is difficult to build classical integrators using current 
feedback amplifiers. Some current feedback op amps have an external pin that may be 
used to configure them as a very good integrator, but this configuration does not lend 
itself to classical active filter designs.  
 
Current feedback integrators tend to be non-inverting, which is not acceptable in the state 
variable configuration. Also, the bandwidth of a current feedback amplifier is set by its 
feedback resistor, which would make the Multiple Feedback topology difficult to 
implement. Another limitation of the current feedback amplifier in the Multiple Feedback 
configuration is the low input impedance of the inverting terminal. This would result in 
loading of the filter network. Sallen-Key filters are possible with current feedback 
amplifiers, since the amplifier is used as a non-inverting gain block. New topologies that 
capitalize on the current feedback amplifiers superior high frequency performance and 
compensate for its limitations will have to be developed. 
 
The last thing that you need to be aware of is exceeding the dynamic range of the 
amplifier. Qs over 0.707 will cause peaking in the response of the filter (see Figures 5-5 
through 5-7). For high Q's, this could cause overload of the input or output stages of the 
amplifier with a large input. Note that relatively small values of Q can cause significant 
peaking. The Q times the gain of the circuit must stay under the loop gain (plus some 
margin, again, 20dB is a good starting point). This holds for multiple amplifier topologies 
as well. Be aware of internal node levels, as well as input and output levels. As an 
amplifier overloads, its effective Q decreases, so the transfer function will appear to 
change even if the output appears undistorted. This shows up as the transfer function 
changing with increasing input level. 
 
We have been dealing mostly with lowpass filters in our discussions, but the same 
principles are valid for highpass, bandpass, and band reject as well. In general, things like  
Q enhancement and limited gain/bandwidth will not affect highpass filters, since the 
resonant frequency will hopefully be low in relation to the cutoff frequency of the op 
amp. Remember, though, that the highpass filter will have a low pass section, by default, 
at the cutoff frequency of the amplifier. Bandpass and band reject (notch) filters will be 
affected, especially since both tend to have high values of Q.  
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The general effect of the op amp's frequency response on the filter Q is shown in Figure 
5-88. 

Figure 5-88: Q enhancement 
As an example of the Q enhancement phenomenon, consider the Spice simulation of a 
10kHz bandpass Multiple Feedback filter with Q = 10 and gain = 1, using a good high 
frequency amplifier (the AD847) as the active device. The circuit diagram is shown in 
Figure 5-89. The open loop gain of the AD847 is greater than 70dB at 10kHz as shown in 
Figure 5-91(A). This is well over the 20dB minimum, so the filter works as designed as 
shown in Figure 5-90.  
 
We now replace the AD847 with an OP-90. The OP-90 is a DC precision amplifier and 
so has a limited bandwidth. In fact, its open loop gain is less than 10dB at 10kHz (see 
Figure 5-91(B)). This is not to imply that the AD847 is in all cases better than the OP-90. 
It is a case of misapplying the OP-90.  

Figure 5-89: 1kHz multiple feedback bandpass filter  
From the output for the OP-90, also shown in Figure 5-90, we see that the magnitude of 
the output has been reduced, and the center frequency has shifted downward.  
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Figure 5-90: Effects of "Q enhancement" 

Figure 5-91: AD847 and OP-90 Bode plots 
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NOTES:
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SECTION 5-8: DESIGN EXAMPLES 
 
Several examples will now be worked out to demonstrate the concepts previously 
discussed 
 
Antialias Filter 
 
As an example, passive and active antialiasing filters will now be designed based upon a 
common set of specifications. The active filter will be designed in four ways:  Sallen-
Key, Multiple Feedback, State Variable, and Frequency Dependent Negative Resistance 
(FDNR). 
 
The specifications for the filter are given as follows: 
 

1) The cutoff frequency will be 8kHz.  
2) The stopband attenuation will be 72dB. This corresponds to a 12 bit               
system. 
3) Nyquist frequency of 50kSPS. 
4) The Butterworth filter response is chosen in order to give the best 
compromise between attenuation and phase response. 

 

Figure 5-92: Determining filter order 
Consulting the Butterworth response curves (Figure 5-14, reproduced above in 
Figure 5-92), we see that for a frequency ratio of 6.25 (50kSPS / 8kSPS), that a filter 
order of 5 is required.  
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Now consulting the Butterworth design table (Figure 5-25), the normalized poles of a 5th 
order Butterworth filter are: 
 
   STAGE            Fo          α    .                              
        1            1.000    1.618 

      2                1.000                 0.618 
      3            1.000    ------ 
 

The last stage is a real (single) pole, thus the lack of an alpha value. It should be noted 
that this is not necessarily the order of implementation in hardware. In general, you would 
typically put the real pole last and put the second order sections in order of decreasing 
alpha (increasing Q) as we have done here. This will avoid peaking due to high Q 
sections possibly overloading internal nodes. Another feature of putting the single pole at 
the end is to bandlimit the noise of the op amps. This is especially true if the single pole is 
implemented as a passive filter. 
 
For the passive design, we will choose the zero input impedance configuration. While 
"classic" passive filters are typically double terminated, that is with termination on both 
source and load ends, we are concerned with voltage transfer not power transfer so the 
source termination will not be used. From the design table (see Reference 2, p. 313), we 
find the normalized values for the filter (see Figure 5-93). 

Figure 5-93: Normalized passive filter implementation 

These values are normalized for a 1 rad/s filter with a 1Ω termination. To scale the filter 
we divide all reactive elements by the desired cutoff frequency, 8kHz (= 50265 rad/sec, = 
2π 8×103). This is commonly referred to as the frequency scale factor (FSF). We also 
need to scale the impedance.  
 
For this example, an arbitrary value of 1000Ω is chosen. To scale the impedance, we 
multiply all resistor and inductor values and divide all capacitor values by this magnitude, 
which is commonly referred to as the impedance scaling factor (Z).  
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After scaling, the circuit looks like Figure 5-94. 

Figure 5-94: Passive filter implementation 
For the Sallen-Key active filter, we use the design equations shown in Figure 5-49. The 
values for C1 in each section are arbitrarily chosen to give reasonable resistor values. The 
implementation is shown in Figure 5-95. 

Figure 5-95: Sallen-Key implementation 
The exact values have been rounded to the nearest standard value. For most active 
realization to work correctly, it is required to have a zero-impedance driver, and a return 
path for DC due to the bias current of the op amp. Both of these criteria are 
approximately met when you use an op amp to drive the filter.  
 
In the above example the single pole has been built as an active circuit. It would have 
been just as correct to configure it as a passive RC filter. The advantage to the active 
section is lower output impedance, which may be an advantage in some applications, 
notably driving an ADC input that uses a switched capacitor structure.  
 
This type of input is common on sigma delta ADCs as well as many other CMOS type of 
converters. It also eliminates the loading effects of the input impedance of the following 
stage on the passive section. 
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Figure 5-96 shows a multiple feedback realization of our filter. It was designed using the 
equations in Figure 5-52. In this case, the last section is a passive RC circuit.  

Figure 5-96: Multiple feedback implementation 
An optional buffer could be added after the passive section, if desired. This would give 
many of the advantages outlined above, except for bandlimiting the noise of the output 
amp. By using one of the above two filter realizations, we have both an inverting and a 
non-inverting design. 
 
The state variable filter, shown in Figure 5-97, was designed with the equations in Figure 
5-55. Again, we have rounded the resistor values to the nearest standard 1% value. 

Figure 5-97: State variable implementation 
Obviously this filter implementation has many more parts than either the Sallen-Key or 
the multiple feedback. The rational for using this circuit is that stability is improved and 
the individual parameters are independently adjustable.  
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The Frequency Dependent Negative Resistance (FDNR) realization of this filter is shown 
in Figure 5-98.  

Figure 5.98: FDNR Implementation 
In the conversion process from passive to FDNR, the D element is normalized for a 
capacitance of 1F. We then scale the filter to a more reasonable value (0.01µF in this 
case).  

 
In all of the above implementations standard values were used instead of the calculated 
values. Any variation from the ideal values will cause a shift in the filter response 
characteristic, but often the effects are minimal. The computer can be used to evaluate 
these variations on the overall performance and determine if they are acceptable.  
 
To examine the effect of using standard values, take the Sallen-Key implementation. 
Figure 5-99 shows the response of each of the 3 sections of the filter. While the Sallen-
Key was the filter used, the results from any of the other implementations will give 
similar results. 

 
Figure 5-100 then shows the effect of using standard values instead of calculated values. 
Notice that the general shape of the filter remains the same, just slightly shifted in 
frequency. This investigation was done only for the standard value of the resistors. To 
understand the total effect of component tolerance the same type of calculations would 
have to be done for the tolerance of all the components and also for their temperature and 
aging effects. 
 
In active filter applications using op amps, the dc accuracy of the amplifier is often 
critical to optimal filter performance. The amplifier's offset voltage will be passed by the 
lowpass filter and may be amplified to produce excessive output offset. For low 
frequency applications requiring large value resistors, bias currents flowing through these 
resistors will also generate an output offset voltage.  
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In addition, at higher frequencies, an op amp's dynamics must be carefully considered. 
Here, slewrate, bandwidth, and open loop gain play a major role in op amp selection. The 
slewrate must be fast as well as symmetrical to minimize distortion.  

Figure 5-99: Individual section response 

 

Figure 5-100: Effect of using standard value resistors 
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Transformations 
 
In the next example the transformation process will be investigated: 
 
As mentioned earlier, filter theory is based on a low pass prototype, which is then 
manipulated into the other forms. In these examples the prototype that will be used is a 
1kHz, 3 pole, 0.5dB Chebyshev filter. A Chebyshev was chosen because it would show 
more clearly if the responses were not correct, a Butterworth would probably be too 
forgiving in this instance. A 3 pole filter was chosen so that a pole pair and a single pole 
would be transformed. 
 
The pole locations for the LP prototype were taken from Figure 5-30. They are: 
     

STAGE α     β       FO               α     
                                   . 
 

        1          0.2683     0.8753     1.0688    0.5861 
        2             0.5366        0.6265 
 
The first stage is the pole pair and the second stage is the single pole. Note the 
unfortunate convention of using α for 2 entirely separate parameters. The α and β on the 
left are the pole locations in the s-plane. These are the values that are used in the 
transformation algorithms. The α on the right is 1/Q, which is what the design equations 
for the physical filters want to see. 
 
The Sallen-Key topology will be used to build the filter. The design equations in Figure 
5-67 (pole pair) and Figure 5-66 (single pole) where then used to design the filter. The 
schematic is shown in Figure 5-101. 

Figure 5-101: Lowpass prototype 
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Using the equation string described in Section 5, the filter is now transformed into a 
highpass filter. The results of the transformation are: 
 
 
  STAGE α   β     FO        α 
               .   
        1         0.3201    1.0443    0.9356    0.5861 
        2            1.8636     1.596 
 
 
A word of caution is warranted here. Since the convention of describing a Chebyshev 
filter is to quote the end of the error band instead of the 3dB frequency, the F0 must be 
divided (for highpass) by the ratio of ripple band to 3dB bandwidth (Table 1, Section 4). 
 
The Sallen-Key topology will again be used to build the filter. The design equations in 
Figure 5-68 (pole pair) and Figure 5-66 (single pole) where then used to design the filter. 
The schematic is shown in Figure 5-102. 

 

Figure 5-102: Highpass transformation 
Figure 5-103 shows the response of the lowpass prototype and the highpass 
transformation. Note that they are symmetric around the cutoff frequency of 1kHz. Also 
note that the errorband is at 1kHz, not the −3dB point, which is characteristic of 
Chebyshev filters. 
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Figure 5-103: Lowpass and highpass response 
The lowpass prototype is now converted to a bandpass filter. The equation string outlined 
in Section 5-5 is used for the transformation. Each pole of the prototype filter will 
transform into a pole pair. Therefore the 3 pole prototype, when transformed, will have 6 
poles (3 pole pairs). In addition, there will be 6 zeros at the origin. 
 
Part of the transformation process is to specify the 3 dB bandwidth of the resultant filter. 
In this case this bandwidth will be set to 500 Hz. The results of the transformation yield: 
 
  STAGE  F0  Q  A0   
                    . 

        1            804.5           7.63            3.49 
        2            1243                7.63                  3.49 
        3                          1000                3.73                     1  
 
The reason for the gain requirement for the first 2 stages is that their center frequencies 
will be attenuated relative to the center frequency of the total filter. Since the resultant Q's 
are moderate (less than 20) the Multiple Feedback topology will be chosen. Figure 5-72 
was then used to design the filter sections.  
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Figure 5-104 is the schematic of the filter and Figure 5-105 shows the filter response. 

Figure 5-104: Bandpass transformation 

Figure 5-105: Bandpass filter response 
Note that again there is symmetry around the center frequency. Also the 500Hz 
bandwidth is not 250Hz either side of the center frequency (arithmetic symmetry). Instead 
the symmetry is geometric, which means that for any 2 frequencies (F1 & F2) of equal 
amplitude are related by: 
 
 
 
Lastly the prototype will be transformed into a bandreject filter. For this the equation 
string in Section 5-5 is used. Again, each pole of the prototype filter will transform into a 
pole pair. Therefore, the 3 pole prototype, when transformed, will have 6 poles (3 pole 
pairs).  
 

F0 = √ F1* F2

+

-

+

-

+

-

IN

OUT

43.2kΩ

0.01µF

0.01µF
1.33kΩ

301kΩ

28kΩ

866Ω
0.01µF

0.01µF 196kΩ

59kΩ

2.21kΩ

0.01µF

0.01µF

118kΩ

R
ES

PO
N

SE
 (d

B
)

FREQUENCY (kHz)

0

–5

–10

–15

–20
0.3 1.0 3.0



ANALOG FILTERS 
DESIGN EXAMPLES 

5.123 

As in the bandpass case, part of the transformation process is to specify the 3dB 
bandwidth of the resultant filter. Again in this case this bandwidth will be set to 500Hz. 
The results of the transformation yield: 
 
  STAGE  F0  Q  F0Z 
                       .   

        1            763.7           6.54            1000 
        2            1309                6.54                  1000 
        3                          1000                1.07                  1000  
 
Note that there are 3 cases of notch filters required. There is a standard notch (F0 = FZ, 
section 3), a lowpass notch (F0 <  FZ, section 1) and a highpass notch (F0 > FZ, section 2). 
Since there is a requirement for all 3 types of notches, the Bainter Notch is used to build 
the filter. The filter is designed using Figure 5-77. The gain factors K1 & K2 are 
arbitrarily set to 1. Figure 5-106 is the schematic of the filter. 
 

Figure 5-106: Bandreject transformation 
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The response of the filter is shown in Figure 5-107 and in detail in Figure 5-108. Again, 
note the symmetry around the center frequency. Again the frequencies have geometric 
symmetry. 

Figure 5-107: Bandreject response 

Figure 5-108: Bandreject response (detail) 
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CD Reconstruction Filter 
 
This design was done for a magazine article describing a high quality outboard D/A 
converter for use with digital audio sources (se Reference 26). 
 
A reconstruction filter is required on the output of a D/A converter because, despite the 
name, the output of a D/A converter is not really an analog voltage but instead a series of 
steps. The converter will put out a discrete voltage, which it will then hold until the next 
sample is asserted. The filter's job is to remove the high frequency components, 
smoothing out the waveform. This is why the filter is sometimes referred to as a 
smoothing filter. This also serves to eliminate the aliases of the conversion process. The 
"standard" in the audio industry is to use a 3rd order Bessel function as the reconstruction 
filter. The reason to use a Bessel filter is that it has the best phase response. This helps to 
preserve the phase relationship of the individual tones in the music. The price for this 
phase "goodness" is that the amplitude discrimination is not as good as some other filter 
types. If we assume that we are using 8× oversampling of the 48kSPS data stream in the 
D/A converter then the aliases will appear at 364kHz (8 × 48k – 20k). The digital filter 
that is used in the interpolation process will eliminate the frequencies between 20kHz and 
364kHz. If we assume that the bandedge is 30kHz, then we have a frequency ratio of 
approximately 12 (364 ÷ 30). We use 30kHz as the band edge, rather than 20kHz to 
minimize the rolloff due to the filter in the passband. In fact, the complete design for this 
filter includes a shelving filter to compensate for the passband rolloff. Extrapolating from 
Figure 5-20, a 3rd order Bessel will only provide on the order of 55dB attenuation at 12 × 
Fo. This is only about 9 bit accuracy. 
 
By designing the filter as 7th order, and by designing it as a linear phase with equiripple 
error of 0.05°, we can increase the stopband attenuation to about 120dB at 12 × Fo. This 
is close to the 20 bit system that we are hoping for. 
 
The filter will be designed as a FDNR type. This is an arbitrary decision. Reasons to 
choose this topology are it’s low sensitivities to component tolerances and the fact that 
the op amps are in the shunt arms rather than in the direct signal path. 
 
The first step is to find the passive prototype. To do this, use the charts in Williams's book. 
We then get the circuit shown in Figure 5-109A.  Next perform a translation in the s-plane.               
This gives the circuit shown in Figure 5-109B. This filter is scaled for a frequency of 1Hz. 
and an impedance level of 1Ω. The D structure of the converted filter is replaced by a GIC 
structure that can be physically realized. The filter is then denormalize by frequency 
(30kHz) and impedance (arbitrarily chosen to be 1kΩ). This gives a frequency-scaling 
factor (FS) of 1.884 ×105  (= 2π (3 ×104)). Next arbitrarily choose a value of 1nF for the 
capacitor. This gives an impedance-scaling factor (Z) of 5305 (= (COLD/CNEW )/ FSF). 
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Figure 5-109A: CD Reconstruction filter – passive prototype 

Figure 5-109B: CD Reconstruction filter – transformation in s-plane 

 

Figure 5-109C: CD Reconstruction filter – normalized FDNR 

Figure 5-109D: CD Reconstruction filter – final filter 
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Then multiply the resistor values by Z. This results in the resistors that had the 
normalized value of 1Ω will now have a value of 5.305kΩ. For the sake of simplicity 
adopt the standard value of 5.36kΩ. Working backwards, this will cause the cutoff 
frequency to change to 29.693kHz. This slight shift of the cutoff frequency will be 
acceptable.  
 
The frequency scaling factor is then recalculated with the new center frequency and this 
value is used to denormalize the rest of the resistors. The design flow is illustrated in 
Figure 5-109. The final schematic is shown it Figure 5-109D. 
 
The performance of the filter is shown in Figure 5-110(A-D). 
 

 

Figure 5-110: CD filter performance 

(C) SIGNAL TO NOISE RATIO (D) THD + N

(A) FREQUENCY RESPONSE (B) LINEARITY
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Digitally Programable State Variable Filter 
 
One of the attractive features of the state variable filter is that the parameters (gain, cutoff 
frequency and "Q") can be individually adjusted. This attribute can be exploited to allow 
control of these parameters. 
 
To start, the filter is reconfigured slightly. The resistor divider that determines Q (R6 & 
R7 of Figure 5-54) is changed to an inverting configuration. The new filter schematic is 
shown in Figure 5-111. Then the resistors R1, R2, R3 & R4 (of Figure 5-111) are 
replaced by CMOS multiplying DACs. Note that R5 is implemented as the feedback 
resistor implemented in the DAC. The schematic of this circuit is shown in Figure 5-112. 

Figure 5-111: Redrawn state variable filter 
The AD7528 is an 8 bit dual MDAC. The AD825 is a high speed FET input opamp. 
Using these components the frequency range can be varied from around 550Hz to around 
150kHz (Figure 5-113). The Q can be varied from approximately 0.5 to over 12.5 (Figure 
5-114). The gain of circuit can be varied from 0dB to –48dB (Figure 5-115).  
 
The operation of the DACs in controlling the parameters can be best thought of as the 
DACs changing the effective resistance of the resistors. This relationship is: 
 
 
 

 
 
This, in effect, varies the resistance from 11kΩ to 2.8MΩ for the AD7528. 
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Figure 5-112: Digitally controlled state variable filter 

Figure 5-113: Frequency response vs. DAC control word 
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Figure 5-114: Q Variation vs. DAC control word 

Figure 5-115: Gain variation vs. DAC control word 
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One limitation of this design is that the frequency is dependent on the ladder resistance of 
the DAC. This particular parameter is not controlled. DACs are trimmed so that the ratios 
of the resistors, not their absolute values, are controlled. In the case of the AD7528, the 
typical value is 11kΩ. It is specified as 8kΩ min. and 15kΩ max. A simple modification 
of the circuit can eliminate this issue. The cost is 2 more op amps (Figure 5-116). In this 
case, the effective resistor value is set by the fixed resistors rather than the DAC's 
resistance. Since there are 2 integrators the extra inversions caused by the added op amps 
cancel.  

Figure 5-116: Improved digitally variable integrator 
As a side note, the multiplying DACs could be replaced by analog multipliers. In this case 
the control would obviously be an analog rather than a digital signal. We also could just 
as easily have used a digital pot in place of the MDACs. The difference is that instead of 
increasing the effective resistance, the value of the pot would be the maximum. 
 
60 Hz Notch Filter 
 
A very common problem in instrumentation is that of interference of the telemetry that is 
to be measured. One of the primary sources of this interference is the power line. This is 
particularly true of high impedance circuits. Another path for this noise is ground loops. 
One possible solution is to use a notch filter to remove the 60Hz. component. Since this is 
a single frequency interference, the Twin-T circuit will be used.  
 
Since the maximum attenuation is desired and the minimum notch width is desired, the 
maximum Q of the circuit is desired. This means the maximum amount of positive 
feedback is used (R5 open and R4 shorted). Due to the high impedance of the network, a 
FET input op amp is used. 
 
The filter is designed using Figure 5-78. The schematic is shown in Figure 5-117 and the 
response in Figure 5-118. 
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Figure 5-117: 60 Hz Twin-T notch filter 

Figure 5-118: 60 Hz notch response 
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