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CHAPTER 5: ANALOG FILTERS 
Hank Zumbahlen 

SECTION 5-1: INTRODUCTION 
 
Filters are networks that process signals in a frequency-dependent manner. The basic 
concept of a filter can be explained by examining the frequency dependent nature of the 
impedance of capacitors and inductors. Consider a voltage divider where the shunt leg is 
a reactive impedance. As the frequency is changed, the value of the reactive impedance 
changes, and the voltage divider ratio changes. This mechanism yields the frequency 
dependent change in the input/output transfer function that is defined as the frequency 
response. 
 
Filters have many practical applications. A simple, single pole, lowpass filter (the 
integrator) is often used to stabilize amplifiers by rolling off the gain at higher frequencies 
where excessive phase shift may cause oscillations.  
 
A simple, single pole, highpass filter can be used to block DC offset in high gain 
amplifiers or single supply circuits. Filters can be used to separate signals, passing those 
of interest, and attenuating the unwanted frequencies.   
 
An example of this is a radio receiver, where the signal you wish to process is passed 
through, typically with gain, while attenuating the rest of the signals. In data conversion, 
filters are also used to eliminate the effects of aliases in A/D systems. They are used in 
reconstruction of the signal at the output of a D/A as well, eliminating the higher 
frequency components, such as the sampling frequency and its harmonics, thus smoothing 
the waveform.  
 
There are a large number of texts dedicated to filter theory. No attempt will be made to go 
heavily into much of the underlying math: Laplace transforms, complex conjugate poles 
and the like, although they will be mentioned.  
 
While they are appropriate for describing the effects of filters and examining stability, in 
most cases examination of the function in the frequency domain is more illuminating. 
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An ideal filter will have an amplitude response that is unity (or at a fixed gain) for the 
frequencies of interest (called the passband) and zero everywhere else (called the 
stopband). The frequency at which the response changes from passband to stopband is 
referred to as the cutoff frequency.  
 
Figure 5-1(A) shows an idealized lowpass filter. In this filter the low frequencies are in 
the passband and the higher frequencies are in the stopband. 
 
The functional complement to the lowpass filter is the highpass filter. Here, the low 
frequencies are in the stopband, and the high frequencies are in the passband. 
Figure 5-1(B) shows the idealized highpass filter. 
 

Figure 5-1: Idealized filter responses 
If a highpass filter and a lowpass filter are cascaded, a bandpass filter is created. The 
bandpass filter passes a band of frequencies between a lower cutoff frequency, f l, and an 
upper cutoff frequency, f h. Frequencies below f l and above f h are in the stopband. An 
idealized bandpass filter is shown in Figure 5-1(C). 
 
A complement to the bandpass filter is the bandreject, or notch filter. Here, the passbands 
include frequencies below f l and above f h. The band from f l to f h is in the stopband. 
Figure 5-1(D) shows a notch response. 
 
The idealized filters defined above, unfortunately, cannot be easily built. The transition 
from passband to stopband will not be instantaneous, but instead there will be a transition 
region. Stop band attenuation will not be infinite.  
 
The five parameters of a practical filter are defined in Figure 5-2, opposite. 
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The cutoff frequency (Fc) is the frequency at which the filter response leaves the error 
band (or the −3dB point for a Butterworth response filter). The stopband frequency (Fs) is 
the frequency at which the minimum attenuation in the stopband is reached. The 
passband ripple (Amax) is the variation (error band) in the passband response. The 
minimum passband attenuation (Amin) defines the minimum signal attenuation within 
the stopband. The steepness of the filter is defined as the order (M) of the filter. M is also 
the number of poles in the transfer function.  A pole is a root of the denominator of the 
transfer function. Conversely, a zero is a root of the numerator of the transfer function. 
Each pole gives a –6 dB/octave or –20 dB/decade response. Each zero gives a  
+6dB/octave, or  +20 dB/decade response.    

Figure 5.2: Key filter parameters 
Note that not all filters will have all these features. For instance, all-pole configurations 
(i.e. no zeros in the transfer function) will not have ripple in the stopband. Butterworth 
and Bessel filters are examples of all-pole filters with no ripple in the passband. 
 
Typically, one or more of the above parameters will be variable. For instance, if you were 
to design an antialiasing filter for an ADC, you will know the cutoff frequency (the 
maximum frequency that you want to pass), the stopband frequency,  (which will 
generally be the Nyquist frequency (= ½ the sample rate)) and the minimum attenuation 
required (which will be set by the resolution or dynamic range of the system). You can 
then go to a chart or computer program to determine the other parameters, such as filter 
order, F0, and Q, which determines the peaking of the section, for the various sections 
and/or component values.  
 
It should also be pointed out that the filter will affect the phase of a signal, as well as the 
amplitude. For example, a single pole section will have a 90° phase shift at the crossover 
frequency.  A pole pair will have a 180° phase shift at the crossover frequency. The Q of 
the filter will determine the rate of change of the phase. This will be covered more in 
depth in the next section. 

STOPBAND
ATTENUATION

PASSBAND
RIPPLE

3dB POINT
OR

CUTOFF FREQUENCY

STOP BAND
TRANSITION

BAND

PASS BAND

AMIN

AMAX

Fc

STOPBAND
FREQUENCY

Fs



 OP AMP APPLICATIONS 

5.4 

NOTES:



ANALOG FILTERS 
THE TRANSFER FUNCTION 

5.5 

SECTION 5-2: THE TRANSFER FUNCTION 
 
The S-Plane 
 
Filters have a frequency dependent response because the impedance of a capacitor or an 
inductor changes with frequency. Therefore the complex impedances:                                                        

and  

 
are used to describe the impedance of an inductor and a capacitor, respectively,  
where σ is the Neper frequency in nepers per second  (NP/s) and ω is the angular 
frequency in radians per sec (rad/s).  
 
By using standard circuit analysis techniques, the transfer equation of the filter can be 
developed. These techniques include Ohm’s law, Kirchoff’s voltage and current laws, and 
superposition, remembering that the impedances are complex. The transfer equation is 
then: 

 
Therefore, H(s) is a rational function of s with real coefficients with the degree of m for 
the numerator and n for the denominator. The degree of the denominator is the order of 
the filter. Solving for the roots of the equation determines the poles (denominator) and 
zeros (numerator) of the circuit. Each pole will provide a –6dB/octave or –20dB/decade 
response. Each zero will provide a +6dB/octave or +20dB/decade response. These roots 
can be real or complex. When they are complex, they occur in conjugate pairs. These 
roots are plotted on the s plane (complex plane) where the horizontal axis is σ (real axis) 
& the vertical axis is ω (imaginary axis). How these roots are distributed on the s plane 
can tell us many things about the circuit. In order to have stability, all poles must be in the 
left side of the plane. If we have a zero at the origin, that is a zero in the numerator, the 
filter will have no response at DC (highpass or bandpass).  
 
Assume an RLC circuit, as in Figure 5-3. Using the voltage divider concept it can be 
shown that the voltage across the resistor is: 

amsm + am-1sm-1 + … + a1s + a0

bnsn + bn-1sn-1 + … + b1s + b0
H(s) =

 

R Cs

LCs2 + RC s +  1
== V o

V in
H (s)

 

ZC = 1
s C

ZL = s L

s = σ + jω

Eq. 5-1

Eq. 5-2

Eq. 5-3

Eq. 5-4

Eq. 5-5
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Figure 5-3: RLC circuit 
Substituting the component values into the equation yields: 

 
H(s) = 103 

s

s2 + 103s + 107
x

 
Factoring the equation and normalizing gives: 

This gives a zero at the origin and a pole pair at: 

Next, plot these points on the s plane as shown in Figure 5-4: 

Figure 5-4: Pole and zero plotted on the s-plane 
The above discussion has a definite mathematical flavor. In most cases we are more 
interested in the circuit’s performance in real applications. While working in the s plane 
is completely valid, I’m sure that most of us don’t think in terms of Nepers and imaginary 
frequencies. 
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Fo & Q 
 
So if it is not convenient to work in the s plane, why go through the above discussion? 
The answer is that the groundwork has been set for two concepts that will be infinitely 
more useful in practice: Fo & Q.  
 
Fo is the cutoff frequency of the filter. This is defined, in general, as the frequency where  
the response is down 3dB from the passband. It can sometimes be defined as the 
frequency at which it will fall out of the passband. For example, a 0.1dB Chebyshev filter 
can have its Fo at the frequency at which the response is down > 0.1dB. 
 
The shape of the attenuation curve (as well as the phase and delay curves, which define 
the time domain response of the filter) will be the same if the ratio of the actual frequency 
to the cutoff frequency is examined, rather than just the actual frequency itself. 
Normalizing the filter to 1 rad/s, a simple system for designing and comparing filters can 
be developed. The filter is then scaled by the cutoff frequency to determine the 
component values for the actual filter. 
 
Q is the “quality factor” of the filter. It is also sometimes given as α where: 

This is commonly known as the damping ratio. ξ is sometimes used where: 

Figure 5-5: Lowpass filter peaking versus Q  
If Q is > 0.707, there will be some peaking in the filter response. If the Q is < 0.707, 
rolloff at F0 will be greater; it will have a more gentle slope and will begin sooner. The 
amount of peaking for a 2 pole lowpass filter vs. Q is shown in Figure 5-5. 
 

 

α = 1
Q

ξ = 2 α

Eq. 5-6

Eq. 5-7
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Rewriting the transfer function H(s) in terms of ωo and Q: 

 
where Ho is the passband gain and ωo = 2π Fo. 
 
This is now the lowpass prototype that will be used to design the filters. 
 
Highpass Filter 
 
Changing the numerator of the transfer equation, H(s), of the lowpass prototype to H0s2 

transforms the lowpass filter into a highpass filter. The response of the highpass filter is 
similar in shape to a lowpass, just inverted in frequency 
 
The transfer function of a highpass filter is then: 

The response of a 2-pole highpass filter is illustrated in Figure 5-6.  
 

Figure 5-6:Highpass filter peaking versus Q 

H(s) = 
H0 s2

+ ω0
2s2  +

ω0

Q
s

Eq. 5-9
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Bandpass Filter 
 
Changing the numerator of the lowpass prototype to Hoωo

2 will convert the filter to a 
bandpass function. 
 
The transfer function of a bandpass filter is then: 

ωo here is the frequency (F0 = 2 π ω0) at which the gain of the filter peaks.  
 
Ho is the circuit gain and is defined: 
  

Ho = H/Q. 
 
Q has a particular meaning for the bandpass response. It is the selectivity of the filter. It is 
defined as:  

where FL & FH are the frequencies where the response is –3dB from the maximum. 
 
The bandwidth (BW) of the filter is described as: 

It can be shown that the resonant frequency (F0) is the geometric mean of FL & FH, which 
means that F0 will appear half way between FL & FH on a logarithmic scale.  

Also, note that the skirts of the bandpass response will always be symmetrical around F0 
on a logarithmic scale. 
 
The response of a bandpass filter to various values of Q are shown in Figure 5-7 (next 
page). 
 
A word of caution is appropriate here. Bandpass filters can be defined two different ways. 
The narrowband case is the classic definition that we have shown above.  
 
In some cases, however, if the high and low cutoff frequencies are widely separated, the 
bandpass filter is constructed out of separate highpass and lowpass sections. Widely 
separated in this context means separated by at least 2 octaves (×4 in frequency). This is 
the wideband case. 

 

Q =
F0

FH - FL

F0 =   √FH FL

BW = FH - FL

H(s) = 
+ ω0

2s2  +

H0ω0
2

ω0

Q
s

H(s) = 
+ ω0

2s2  +

H0ω0
2

ω0

Q
s

ω0

Q
s

Eq. 5-10

Eq. 5-11

Eq. 5-12

Eq. 5-13

Eq. 5-14
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Figure 5-7: Bandpass filter peaking versus Q 

Bandreject (Notch) Filter 
 
By changing the numerator to s2 + ωz

2, we convert the filter to a bandreject or notch filter. 
As in the bandpass case, if the corner frequencies of the bandreject filter are separated by 
more than an octave (the wideband case), it can be built out of separate lowpass and 
highpass sections. We will adopt the following convention: A narrowband bandreject 
filter will be referred to as a notch filter and the wideband bandreject filter will be 
referred to as bandreject filter. 
 
A notch (or bandreject) transfer function is: 
 
 
 
 
 
There are three cases of the notch filter characteristics. These are illustrated in Figure 5-8 
(opposite). The relationship of the pole frequency, ω0, and the zero frequency, ωz, 
determines if the filter is a standard notch, a lowpass notch or a highpass notch. 
 
If the zero frequency is equal to the pole frequency a standard notch exists. In this 
instance the zero lies on the jω plane where the curve that defines the pole frequency 
intersects the axis. 
 
A lowpass notch occurs when the zero frequency is greater than the pole frequency. In 
this case ωz lies outside the curve of the pole frequencies. What this means in a practical  
sense is that the filter's response below ωz will be greater than the response above ωz. This 
results in an elliptical lowpass filter. 

H(s) = 
H0 (  s2 + ωz

2)

+ ω0
2s2  +

ω0

Q
s

 
Eq. 5-15
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Figure 5-8: Standard, lowpass, and highpass notches 

Figure 5-9: Notch filter width versus frequency for various Q values 
A highpass notch filter occurs when the zero frequency is less than the pole frequency. In 
this case ωz  lies inside the curve of the pole frequencies. What this means in a practical 
sense is that the filters response below ωz  will be less than the response above ωz . This 
results in an elliptical highpass filter. 
 
The variation of the notch width with Q is shown in Figure 5-9. 
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Allpass Filter 
 
There is another type of filter that leaves the amplitude of the signal intact but introduces  
phase shift. This type of filter is called an allpass. The purpose of this filter is to add 
phase shift (delay) to the response of the circuit. The amplitude of an allpass is unity for 
all frequencies. The phase response, however, changes from 0° to 360° as the frequency is 
swept from 0 to infinity. The purpose of an all pass filter is to provide phase equalization, 
typically in pulse circuits. It also has application in single side band, suppressed carrier 
(SSB-SC) modulation circuits.  
 
The transfer function of an allpass filter is: 

 
Note that an allpass transfer function can be synthesized as: 
 

HAP = HLP – HBP + HHP = 1 – 2HBP. 
 
Figure 5-10 (opposite) compares the various filter types. 

H(s)  =

+ ω0
2s2  +

ω0

Q
s

+ ω0
2s2  -

ω0

Q
s

Eq. 5-16 

Eq. 5-17
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Figure 5-10: Standard second-order filter responses 
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Phase Response 
 
As mentioned earlier, a filter will change the phase of the signal as well as the amplitude. 
The question is, does this make a difference? Fourier analysis indicates a square 
wave is made up of a fundamental frequency and odd order harmonics. The magnitude 
and phase responses, of the various harmonics are precisely defined. If the magnitude or 
phase relationships are changed, then the summation of the harmonics will not add back 
together properly to give a square wave. It will instead be distorted, typically showing 
overshoot and ringing or a slow rise time. This would also hold for any complex 
waveform. 
 
Each pole of a filter will add 45° of phase shift at the corner frequency. The phase will 
vary from 0° (well below the corner frequency) to 90° (well beyond the corner 
frequency). The start of the change can be more than a decade away. In multipole filters, 
each of the poles will add phase shift, so that the total phase shift will be multiplied by 
the number of poles (180° total shift for a two pole system, 270° for a three pole system, 
etc.).  
 
The phase response of a single pole, low pass filter is: 

 
The phase response of a lowpass pole pair is: 
 

 
For a single pole highpass filter the phase response is: 

 
 The phase response of a highpass pole pair is: 

 

+ √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

- √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

φ (ω) =

φ (ω) = - arctan 
ω 
ωo

π
2

φ (ω) = + √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

- √ 4 - α2ω 
ωo

( )- arctan 1
α[ ]2

π

φ (ω) = - arctan 
ω
ωo

φ (ω) = - arctan 
ω
ωo

ω
ωo

Eq. 5-18

Eq. 5-19

Eq. 5-20

Eq. 5-21
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The phase response of a bandpass filter is: 

The variation of the phase shift with frequency due to various values of Q is shown in 
Figure 5-11 (for lowpass, highpass, bandpass, and allpass) and in Figure 5-12 (for notch). 

Figure 5-11: Phase response versus frequency 

Figure 5-12: Notch filter phase response 
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It is also useful to look at the change of phase with frequency. This is the group delay of  
the filter. A flat (constant) group delay gives best phase response, but, unfortunately, it 
also gives the least amplitude discrimination. The group delay of a single lowpass pole is: 

For the lowpass pole pair it is: 

For the single highpass pole it is: 

 
For the highpass pole pair it is: 

 
And for the bandpass pole pair it is: 

The Effect of Nonlinear Phase 
 
A waveform can be represented by a series of frequencies of specific amplitude, 
frequency and phase relationships. For example, a square wave is: 

If this waveform were passed through a filter, the amplitude and phase response of the 
filter to the various frequency components of the waveform could be different. If the 
phase delays were identical, the waveform would pass through the filter undistorted. If, 
however, the different components of the waveform were changed due to different 
amplitude and phase response of the filter to those frequencies, they would no longer add 
up in the same manner. This would change the shape of the waveform. These distortions 
would manifest themselves in what we typically call overshoot and ringing of the output. 
 
Not all signals will be composed of harmonically related components. An amplitude 
modulated (AM) signal, for instance, will consist of a carrier and 2 sidebands at ± the 
modulation frequency. If the filter does not have the same delay for the various waveform 
components, then “envelope delay” will occur and the output wave will be distorted. 
 
Linear phase shift results in constant group delay since the derivative of a linear function 
is a constant. 

τ (ω) = =
cos2 φ 

ω0

dφ (ω)
dω

-

τ (ω) = 2 sin2 φ
αω0 2 ω

sin 2 φ-

τ(ω) = =
sin2 φ

ω0

dφ (ω)
dω

-

F(t) = A(       +      sin ω t  +         sin 3ω t  +        sin 5ω t  +        sin 7ω t + ….) 1
2

2
π

2
3 π

2
5 π

2
7 π

τ (ω) = 2 sin2 φ
αω0 2 ω

sin 2 φ-

τ (ω) = 2Q 2 cos2 φ
αω0 2 ω

sin 2 φ
+τ (ω) = 2Q 2 cos2 φ

αω0 2 ω
sin 2 φ

+

Eq. 5-23

Eq. 5-24

Eq. 5-25

Eq. 5-26

Eq. 5-27

Eq. 5-28
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SECTION 5-3: TIME DOMAIN RESPONSE 
 
Up until now the discussion has been primarily focused on the frequency domain 
response of filters. The time domain response can also be of concern, particularly under 
transient conditions. Moving between the time domain and the frequency domain is 
accomplished by the use of the Fourier and Laplace transforms. This yields a method of 
evaluating performance of the filter to a non-sinusoidal excitation.  
 
The transfer function of a filter is the ratio of the output to input time functions. It can be 
shown that the impulse response of a filter defines its bandwidth. The time domain 
response is a practical consideration in many systems, particularly communications, 
where many modulation schemes use both amplitude and phase information.  
 
Impulse Response 
 
The impulse function is defined as an infinitely high, infinitely narrow pulse, with an area 
of unity. This is, of course, impossible to realize in a physical sense. If the impulse width 
is much less than the rise time of the filter, the resulting response of the filter will give a 
reasonable approximation actual impulse response of the filter response. 
 
The impulse response of a filter, in the time domain, is proportional to the bandwidth of 
the filter in the frequency domain. The narrower the impulse, the wider the bandwidth of 
the filter. The pulse amplitude is equal to ωc/π, which is also proportional to the filter 
bandwidth, the height being taller for wider bandwidths. The pulse width is equal to 
2π/ωc, which is inversely proportional to bandwidth. It turns out that the product of the 
amplitude and the bandwidth is a constant. 
 
It would be a nontrivial task to calculate the response of a filter without the use of 
Laplace and Fourier transforms. The Laplace transform converts multiplication and 
division to addition and subtraction, respectively. This takes equations, which are 
typically loaded with integration and/or differentiation, and turns them into simple 
algebraic equations, which are much easier to deal with. The Fourier transform works in 
the opposite direction. 
 
The details of these transform will not be discussed here. However, some general 
observations on the relationship of the impulse response to the filter characteristics will 
be made. 
 
It can be shown, as stated, that the impulse response is related to the bandwidth. 
Therefore, amplitude discrimination (the ability to distinguish between the desired signal 
from other, out of band signals and noise) and time response are inversely proportional. 
That is to say that the filters with the best amplitude response are the ones with the worst 
time response. For all-pole filters, the Chebyshev filter gives the best amplitude 
discrimination, followed by the Butterworth and then the Bessel.  
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If the time domain response were ranked, the Bessel would be best, followed by the 
Butterworth and then the Chebyshev. Details of the different filter responses will be 
discussed in the next section.  
 
The impulse response also increases with increasing filter order. Higher filter order 
implies greater bandlimiting, therefore degraded time response. Each section of a 
multistage filter will have its own impulse response, and the total impulse response is the 
accumulation of the individual responses. The degradation in the time response can also 
be related to the fact that as frequency discrimination is increased, the Q of the individual 
sections tends to increase. The increase in Q increases the overshoot and ringing of the 
individual sections, which implies longer time response.    
 
Step Response 
 
The step response of a filter is the integral of the impulse response. Many of the 
generalities that apply to the impulse response also apply to the step response. The slope 
of the rise time of the step response is equal to the peak response of the impulse. The 
product of the bandwidth of the filter and the rise time is a constant. Just as the impulse 
has a function equal to unity, the step response has a function equal to 1/s. Both of these 
expressions can be normalized, since they are dimensionless. 
 
The step response of a filter is useful in determining the envelope distortion of a 
modulated signal. The two most important parameters of a filter's step response are the 
overshoot and ringing. Overshoot should be minimal for good pulse response. Ringing 
should decay as fast as possible, so as not to interfere with subsequent pulses. 
 
Real life signals typically aren’t made up of impulse pulses or steps, so the transient 
response curves don’t give a completely accurate estimation of the output. They are, 
however, a convenient figure of merit so that the transient responses of the various filter 
types can be compared on an equal footing.  
 
Since the calculations of the step and impulse response are mathematically intensive, they 
are most easily performed by computer. Many CAD (Computer Aided Design) software 
packages have the ability to calculate these responses. Several of these responses are also 
collected in the next section. 
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SECTION 5-4: STANDARD RESPONSES 
 
There are many transfer functions that may satisfy the attenuation and/or phase 
requirements of a particular filter. The one that you choose will depend on the particular 
system. The importance of the frequency domain response versus the time domain 
response must be determined. Also, both of these considerations might be traded off 
against filter complexity, and thereby cost. 
 
Butterworth 
 
The Butterworth filter is the best compromise between attenuation and phase response. It 
has no ripple in the passband or the stopband, and because of this is sometimes called a 
maximally flat filter. The Butterworth filter achieves its flatness at the expense of a 
relatively wide transition region from passband to stopband, with average transient 
characteristics. 
 
The normalized poles of the Butterworth filter fall on the unit circle (in the s plane). The 
pole positions are given by: 

 
where K is the pole pair number, and n is the number of poles. 
 
The poles are spaced equidistant on the unit circle, which means the angles between the 
poles are equal. 
 
Given the pole locations, ω0, and α (or Q) can be determined. These values can then be 
use to determine the component values of the filter. The design tables for passive filters 
use frequency and impedance normalized filters. They are normalized to a frequency of 1 
rad/sec and impedance of 1Ω. These filters can be denormalized to determine actual 
component values. This allows the comparison of the frequency domain and/or time 
domain responses of the various filters on equal footing. The Butterworth filter is 
normalized for a  –3dB response at ωo = 1. 
 
The values of the elements of the Butterworth filter are more practical and less critical 
than many other filter types. The frequency response, group delay, impulse response and 
step response are shown in Figure 5-15. The pole locations and corresponding ωo and α 
terms are tabulated in Figure 5-26. 
 
Chebyshev  
 
The Chebyshev (or Chevyshev, Tschebychev, Tschebyscheff or Tchevysheff, depending 
on how you translate from Russian) filter has a smaller transition region than the same-
order Butterworth filter, at the expense of ripples in its passband. This filter gets its name 

(2K-1)π
2n

(2K-1)π
2n

-sin + j cos K=1,2....n
 

Eq. 5-29
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because the Chebyshev filter minimizes the height of the maximum ripple, which is the 
Chebyshev criterion.  
 
Chebyshev filters have 0dB relative attenuation at DC. Odd order filters have an 
attenuation band that extends from 0dB to the ripple value. Even order filters have a gain 
equal to the passband ripple. The number of cycles of ripple in the passband is equal to 
the order of the filter. 
 
The poles of the Chebyshev filter can be determined by moving the poles of the 
Butterworth filter to the right, forming an ellipse. This is accomplished by multiplying the 
real part of the pole by kr and the imaginary part by kI.  The values kr and k I  can be 
computed by: 
     K r  = sinh A 
 
     KI =  cosh A 
where: 

where n is the filter order and: 

 
where: 

where: 
RdB = passband ripple in dB        

 
The Chebyshev filters are typically normalized so that the edge of the ripple band is at  
ωo = 1. The 3dB bandwidth is given by: 

 
This is tabulated in Table 1 (opposite). 
 
The frequency response, group delay, impulse response and step response are cataloged in 
Figures 5-16 to 5-20 on following pages, for various values of passband ripple (0 .01dB, 
0.1dB, 0.25dB, 0.5dB and 1dB). The pole locations and corresponding ωo and α terms for 
these values of ripple are tabulated in Figures 5-27 to 5-31 on following pages. 
 

A =       sinh-11
n

1
ε

ε =  √ 10R -1

RdB
10R =

A3dB =       cosh-11
n

1
ε(  )

Eq. 5-30 

Eq. 5-31 

Eq. 5-32 

Eq. 5-33 

Eq. 5-34 

Eq. 5-35 

Eq. 5-36 
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ORDER .01dB .1dB .25dB .5dB 1dB
2 3.30362 1.93432 1.59814 1.38974 1.21763
3 1.87718 1.38899 1.25289 1.16749 1.09487
4 1.46690 1.21310 1.13977 1.09310 1.05300
5 1.29122 1.13472 1.08872 1.05926 1.03381
6 1.19941 1.09293 1.06134 1.04103 1.02344
7 1.14527 1.06800 1.04495 1.03009 1.01721
8 1.11061 1.05193 1.03435 1.02301 1.01316
9 1.08706 1.04095 1.02711 1.01817 1.01040

10 1.07033 1.03313 1.02194 1.01471 1.00842  
Table 1: 3dB bandwidth to ripple bandwidth for Chebyshev filters 

Bessel 
 
Butterworth filters have fairly good amplitude and transient behavior. The Chebyshev 
filters improve on the amplitude response at the expense of transient behavior. The Bessel 
filter is optimized to obtain better transient response due to a linear phase (i.e. constant 
delay) in the passband. This means that there will be relatively poorer frequency response 
(less amplitude discrimination). 
 
The poles of the Bessel filter can be determined by locating all of the poles on a circle and 
separating their imaginary parts by: 

where n is the number of poles. Note that the top and bottom poles are distanced by 
where the circle crosses the jω axis by: 

or half the distance between the other poles. 
 
The frequency response, group delay, impulse response and step response for the Bessel 
filters are cataloged in Figure 5-21. The pole locations and corresponding ωo and α terms 
for the Bessel filter are tabulated in Figure 5-32. 
 

1
n

2
n

Eq. 5-37

Eq. 5-38
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Linear Phase with Equiripple Error 
 
The linear phase filter offers linear phase response in the passband, over a wider range 
than the Bessel, and superior attenuation far from cutoff. This is accomplished by letting 
the phase response have ripples, similar to the amplitude ripples of the Chebyshev. As the 
ripple is increased, the region of constant delay extends further into the stopband. This 
will also cause the group delay to develop ripples, since it is the derivative of the phase 
response. The step response will show slightly more overshoot than the Bessel and the 
impulse response will show a bit more ringing. 
 
It is difficult to compute the pole locations of a linear phase filter. Pole locations are 
taken from the Williams book (see Reference 2), which, in turn, comes from the Zverev 
book (see Reference 1). 
 
The frequency response, group delay, impulse response and step response for linear phase 
filters of 0.05° ripple and 0.5° ripple are given in Figures 5-22 and 5-23. The pole 
locations and corresponding ωo and α terms are tabulated in Figures 5-33 and 5-34. 
 
Transitional Filters 
 
A transitional filter is a compromise between a Gaussian filter, which is similar to a 
Bessel, and the Chebyshev. A transitional filter has nearly linear phase shift and smooth, 
monotonic rolloff in the passband. Above the passband there is a break point beyond 
which the attenuation increases dramatically compared to the Bessel, and especially at 
higher values of n. 
 
Two transition filters have been tabulated. These are the Gaussian to 6dB and Gaussian to 
12dB.  
 
The Gaussian to 6dB filter has better transient response than the Butterworth in the 
passband. Beyond the breakpoint, which occurs at ω = 1.5, the rolloff is similar to the 
Butterworth. 
 
The Gaussian to 12dB filter’s transient response is much better than Butterworth in the 
passband. Beyond the 12dB breakpoint, which occurs at ω = 2, the attenuation is less than 
the Butterworth. 
 
As is the case with the linear phase filters, pole locations for transitional filters do not 
have a closed form method for computation. Again, pole locations are taken from 
Williams's book (see Reference 2). These were derived from iterative techniques. 
 
The frequency response, group delay, impulse response and step response for Gaussian to 
12dB and 6dB are shown in Figures 5-24 and 5-25. The pole locations and corresponding 
ωo and α terms are tabulated in Figures 5-35 and 5-36. 
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Comparison of All-Pole Responses 
 
The responses of several all-pole filters, namely the Bessel, Butterworth and Chebyshev 
(in this case of 0.5dB ripple) will now be compared. An 8 pole filter is used as the basis 
for the comparison. The responses have been normalized for a cutoff of 1Hz. Comparing 
Figures 5-13 and 5-14 below, it is easy to see the tradeoffs in the response types. Moving 
from Bessel through Butterworth to Chebyshev, notice that the amplitude discrimination 
improves as the transient behavior gets progressively poorer. 

Figure 5-13: Comparison of amplitude response of  
Bessel, Butterworth and Chebyshev filters 

Figure 5-14: Comparison of Step and Impulse Responses  
of Bessel, Butterworth and Chebyshev 

Elliptical 
 
The previously mentioned filters are all-pole designs, which mean that the zeros of the 
transfer function  (roots of the numerator) are at one of the two extremes of the frequency 
range (0 or ∞). For a lowpass filter, the zeros are at f = ∞. If finite frequency transfer 
function zeros are added to poles an Elliptical filter (sometimes referred to as Cauer 
filters) is created. This filter has a shorter transition region than the Chebyshev filter 
because it allows ripple in both the stopband and passband. It is the addition of zeros in 
the stopband that causes ripple in the stopband but gives a much higher rate of 
attenuation, the most possible for a given number of poles. There will be some 
"bounceback” of the stopband response between the zeros. This is the stopband ripple. 
The Elliptical filter also has degraded time domain response.  
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Since the poles of an elliptic filter are on an ellipse, the time response of the filter 
resembles that of the Chebyshev. 
 
An Elliptic filter is defined by the parameters shown in Figure 5-2, those being Amax, the 
maximum ripple in the passband, Amin, the minimum attenuation in the stopband, Fc, the 
cutoff frequency, which is where the frequency response leaves the passband ripple and 
FS, the stopband frequency, where the value of Amax is reached.  
 
An alternate approach is to define a filter order n, the modulation angle, θ, which defines 
the rate of attenuation in the transition band, where: 

 
and ρ which determines the passband ripple, where: 

where ε is the ripple factor developed for the Chebyshev response, and the passband 
ripple is: 
                   RdB = - 10 log (1 - ρ2) 
 
Some general observations can be made. For a given filter order n, and θ, Amin increases 
as the ripple is made larger. Also, as θ approaches 90°, FS approaches FC. This results in 
extremely short transition region, which means sharp rolloff. This comes at the expense 
of lower Amin.   
 
As a side note, ρ determines the input resistance of a passive elliptical filter, which can 
then be related to the VSWR (Voltage Standing Wave Ratio). 
 
Because of the number of variables in the design of an elliptic filter, it is difficult to 
provide the type of tables provided for the previous filter types. Several CAD (Computer 
Aided Design) packages can provide the design values. Alternatively several sources, 
such as Williams's (see Reference 2), provide tabulated filter values. These tables classify 
the filter by 

where the C denotes Cauer. Elliptical filters are sometime referred to as Cauer filters after 
the network theorist Wilhelm Cauer. 

C  n  ρ  θ

√ ε2

1 + ε2ρ = √ ε2

1 + ε2ρ = ε2

1 + ε2ρ =

θ = sin-1 1 
Fs

θ = sin-1 1 
Fs

Eq. 5-39

Eq. 5-40

Eq. 5-41
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Maximally Flat Delay With Chebyshev Stopband 
 
Bessel type (Bessel, linear phase with equiripple error and transitional) filters give 
excellent transient behavior, but less than ideal frequency discrimination. Elliptical filters 
give better frequency discrimination, but degraded transient response. A maximally flat 
delay with Chebyshev stopband filter takes a Bessel type function and adds transmission 
zeros. The constant delay properties of the Bessel type filter in the passband are 
maintained, and the stopband attenuation is significantly improved. The step response 
exhibits no overshoot or ringing, and the impulse response is clean, with essentially no 
oscillatory behavior. Constant group delay properties extend well into the stopband for 
increasing n. 
 
As with the elliptical filter, numeric evaluation is difficult. Williams’s book (see 
Reference 2) tabulates passive prototypes normalized component values. 
 
Inverse Chebyshev 
 
The Chebyshev response has ripple in the passband and a monotonic stopband. The 
inverse Chebyshev response can be defined that has a monotonic passband and ripple in 
the stopband. The inverse Chebyshev has better passband performance than even the 
Butterworth. It is also better than the Chebyshev, except very near the cutoff frequency.  
In the transition band, the inverse Chebyshev has the steepest rolloff. Therefore, the 
inverse Chebyshev will meet the Amin specification at the lowest frequency of the three. In 
the stopband there will, however, be response lobes which have a magnitude of: 

where ε is the ripple factor defined for the Chebyshev case. This means that deep into the 
stopband, both the Butterworth and Chebyshev will have better attenuation, since they are 
monotonic in the stopband. In terms of transient performance, the inverse Chebyshev lies 
midway between the Butterworth and the Chebyshev. 
 
The inverse Chebyshev response can be generated in three steps. First take a Chebyshev 
lowpass filter. Then subtract this response from 1. Finally, invert in frequency by 
replacing ω with 1/ω.  
 
These are by no means all the possible transfer functions, but they do represent the most 
common.  

ε2

(1 - ε)
ε2

(1 - ε)
Eq. 5-42
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Using the Prototype Response Curves 
 
In the following pages, the response curves and the design tables for several of the 
lowpass prototypes of the all-pole responses will be cataloged. All the curves are 
normalized to a  −3dB cutoff frequency of 1Hz. This allows direct comparison of the 
various responses. In all cases the amplitude response for the 2 through 10 pole cases for 
the frequency range of 0.1Hz. to 10Hz. will be shown. Then a detail of the amplitude 
response in the 0.1Hz to 2Hz. passband will be shown. The group delay from 0.1Hz to 
10Hz and the impulse response and step response from 0 seconds to 5 seconds will also 
be shown. 
 
To use these curves to determine the response of real life filters, they must be 
denormalized. In the case of the amplitude responses, this is simply accomplished by 
multiplying the frequency axis by the desired cutoff frequency FC. To denormalize the 
group delay curves, we divide the delay axis by 2π FC, and multiply the frequency axis by 
FC, as before. Denormalize the step response by dividing the time axis by 2π FC. 
Denormalize the impulse response by dividing the time axis by 2π FC and multiplying the 
amplitude axis by the same amount. 
 
For a highpass filter, simply invert the frequency axis for the amplitude response. In 
transforming a lowpass filter into a highpass (or bandreject) filter, the transient behavior 
is not preserved. Zverev (see Reference 1) provides a computational method for 
calculating these responses. 
 
In transforming a lowpass into a narrowband bandpass, the 0Hz axis is moved to the 
center frequency F0. It stands to reason that the response of the bandpass case around the 
center frequency would then match the lowpass response around 0Hz. The frequency 
response curve of a lowpass filter actually mirrors itself around 0Hz, although we 
generally don’t concern ourselves with negative frequency.  
 
To denormalize the group delay curve for a bandpass filter, divide the delay axis by πBW, 
where BW is the 3dB bandwidth in Hz. Then multiply the frequency axis by BW/2. In 
general, the delay of the bandpass filter at F0 will be twice the delay of the lowpass 
prototype with the same bandwidth at 0Hz. This is due to the fact that the lowpass to 
bandpass transformation results in a filter with order 2n, even though it is typically 
referred to it as having the same order as the lowpass filter from which it is derived. This 
approximation holds for narrowband filters. As the bandwidth of the filter is increased, 
some distortion of the curve occurs. The delay becomes less symmetrical, peaking below 
F0. 
 
The envelope of the response of a bandpass filter resembles the step response of the 
lowpass prototype. More exactly, it is almost identical to the step response of a lowpass 
filter having half the bandwidth. To determine the envelope response of the bandpass 
filter, divide the time axis of the step response of the lowpass prototype by πBW, where 
BW is the 3dB bandwidth. The previous discussions of overshoot, ringing, etc. can now 
be applied to the carrier envelope. 
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The envelope of the response of a narrowband bandpass filter to a short burst of carrier 
(that is where the burst width is much less than the rise time of the denormalized step 
response of the bandpass filter) can be determined by denormalizing the impulse response 
of the low pass prototype. To do this, multiply the amplitude axis and divide the time axis 
by πBW, where BW is the 3dB bandwidth. It is assumed that the carrier frequency is high 
enough so that many cycles occur during the burst interval. 
 
While the group delay, step and impulse curves cannot be used directly to predict the 
distortion to the waveform caused by the filter, they are a useful figure of merit when 
used to compare filters. 
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Figure 5-15: Butterworth response 
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 Figure 5-16:  0.01dB Chebyshev Response 
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Figure 5-17:  0.1dB Chebyshev Response  
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 Figure 5-18: 0.25dB Chebyshev Response 
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Figure 5-19:  0.5dB Chebyshev Response 
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 Figure 5-20: 1dB Chebyshev Response 
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 Figure 5-21: Bessel Response 
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 Figure 5-22:  Linear Phase Response with Equiripple Error of 0.05° 
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 Figure 5-23:  Linear Phase Response with Equiripple Error of 0.5° 
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 Figure 5-24: Gaussian to 12 dB Response 
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 Figure 5-25: Gaussian to 6dB Response 
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 Figure 5-26: Butterworth Design Table 
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 Figure 5-27: 0.01dB Chebyshev Design Table 
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 Figure 5-28: 0.1dB Chebyshev Design Table 
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 Figure 5-29: 0.25dB Chebyshev Design Table 
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 Figure 5-30: 0.5dB Chebyshev Design Table 
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 Figure 5-31: 1dB Chebyshev Design Table 
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 Figure 5-32: Bessel Design Table 
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 Figure 5-33: Linear Phase with Equiripple Error of 0.05° Design Table 
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 Figure 5-34: Linear Phase with Equiripple Error of 0.5° Design Table 
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 Figure 5-35: Gaussian to 12dB Design Table 
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 Figure 5-36: Gaussian to 6dB Design Table 
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NOTES:


