Rectifier tracks positive and negative peaks

Harry Bissell Jr, Welding Technology Corp, Farmington Hills, MI

-

Signals ranging from music to complex control-system waveforms may contain unequal positive and negative peak amplitudes. An "envelope-follower" circuit can track unequal peaks, but the ability to select a desired peak can enhance the circuit's performance (Reference 1). The circuit in Figure 1 applies a new twist to a classic absolute-value circuit. Applying an input signal to R_{1} (full) produces an output equal to the input's absolute value. Applying an input signal to R_{6} (positive) or R_{7} (negative) produces outputs of positive or negative halfcycles, respectively. Figure 2 illustrates all three modes of operation.

Understanding the circuit is simple if you consider that op amp $\mathrm{IC}_{1 \mathrm{~A}}$ strives
to maintain its inverting input at virtual ground. For example, applying -1 V to the negative input, R_{7}, drives the anode of D_{1} to $-333 \mathrm{mV} . \mathrm{IC}_{1 \mathrm{~A}}$'s output, Pin 1, drives D_{2} 's cathode positive enough to force D_{2} 's anode voltage to 333 mV . Because $\mathrm{IC}_{1 \mathrm{~A}}$'s inputs now rest at $0 \mathrm{~V}, \mathrm{D}_{1}$ is effectively reversebiased and out of the circuit. The 333 mV available at D_{2} 's cathode also applies to $\mathrm{IC}_{1 \mathrm{~B}}$'s noninverting input, Pin 5 , and $\mathrm{IC}_{1 \mathrm{~B}}$ must balance its input voltages by driving its output, Pin 7 , to $1 \mathrm{~V} . \mathrm{IC}_{1 \mathrm{~B}}$'s inverting input, Pin 6, goes to 333 mV . The voltage drop across R_{4} thus equals 666 mV . One-third of the input current flows through the series connection of R_{2} and R_{3}, and twothirds flows in R_{4}. To achieve unity
gain, R_{7} 's value equals that of $R_{2}+R_{3}$ in parallel with R_{4}.

Applying a positive input to R_{7} causes $\mathrm{IC}_{1 \mathrm{~A}}$'s output to go negative by a voltage equal to one forward-diode drop and thus holds D_{1} 's anode at ground. D_{2} is reverse-biased, and both of $\mathrm{IC}_{1 \mathrm{~B}}$'s inputs rest at 0 V . The circuit's output is thus 0 V . Applying an input voltage at R_{6} yields similar operation. A positive input causes an equal-value positive output, and a negative input produces a 0 V output. You can ignore the effects of $\mathrm{IC}_{1 \mathrm{~B}}$'s high input impedance, which are negligible. To maintain unity gain, the value of R_{6} is twice that of R_{3}.

Resistors $R_{1}, R_{2}, R_{3}, R_{4}$, and R_{5} are of equal value and close tolerance. Note that IC_{1} 's power-supply connections require bypass capacitors (not shown). To minimize errors, use a low-impedance source or buffer amplifier to drive the circuit. You can use a three-posi-

designideas

Figure 1 Use this versatile precision rectifier circuit to recover a signal's positive peaks, negative peaks, or both in fullwave mode.
tion rotary switch for input-mode selection, or an on/on/on toggle switch, such as C\&K Components’ 7211, available from Digi-Key Corp (www.digikey. com) and other sources, or a similar switch, wired as a three-way selector. (See the manufacturer's data sheet for a connection diagram.) You can also use separate connectors for the inputs, but connect no more than one input at a time.EDN

REFERENCE

Bissell, Harry, "Envelope follower combines fast response, low ripple," EDN, Dec 26, 2002, pg 59, www.edn.com/article/CA265499.

Figure 2 This waveform plot shows the circuit's outputs for a sine-wave input connected to the negative, full, and positive inputs, respectively. Traces are vertically offset for clarity.

