WORKING WITH OTA's

FIG. 1-A CONVENTIONAL OR-AMP (a) is a fixed-gain voltage-amplifying device, whereas an OTA (b) is a variable-gain volt-age-to-current amplifier..

RAY MARSTON

THERE ARE MANY DIFFERENT TYPES OF OPerational amplifiers in use today, but an Operational Transconductance Amplifier, or OTA, is one that you may not be familiar with. This month we'll introduce you to the CA3080 OTA.

Op-amps and OTA's

Conventional op-amps are essentially voltage-amplifying devices. As figure 1- a shows, a conventional opamp has differential input terminals and produces an output voltage of A_{O} $\times(\mathrm{V} 1-\mathrm{V} 2)$, where A_{O} is the openloop voltage gain (that gain is typically 100,000), V1 is the signal voltage at the non-inverting input, and V2 is the signal voltage at the inverting input. Also, a conventional op-amp has a fixed open-loop voltage gain, a high input impedance, and a low output impedance.

Like a standard op-amp, an OTA has differential input terminals, but, as shown in figure 1- b it is a voltage-to-current amplifier, as indicated by the constant-current symbol at its output. The input voltages produce an output in the form of a high-impedance current with a value of $\mathrm{gm} \times(\mathrm{V} 1$ -V 2), where gm is the transconductance in mhos, or the voltage-to-current gain of the device. The transconductance is directly proportional to an external bias current ($\mathrm{I}_{\text {BIAS }}$) fed into the amplifier's bias input. In an OTA, that current can be

How to use operational transconductance amplifiers in your designs and projects.

FIG. 3-A DIFFERENTIAL AMPLIFIER is at the heart of the CA3080.

Fig. 4-A CURRENT-MIRROR SINK (a) will sink as much current as is applied to its input, and a current-mirror source (b) will supply as much current at its output, as is applied to its input.

FIG. 5-WHEN TWO CURRENT MIRRORS are wired as shown, they generate a differential current in an external load.

FIG. 6-A SINK-TYPE CURRENT MIRROR is made up of the circuitry shown here.

TABLE 1

CHARACTERISTIC
Supply Voltage Range
Max Differential Input Voltage
Power Dissipation
Input Signal Current
Amplifier Bias Current
Output Short-Circuit Duration
Forward Transconductance, gm Open Loop Bandwidth
Unity-Gain Slew Rate
Common-Mode Rejection Ratio

CA3080 operation

The CA3080 consists of one differential amplifier and four Current Mirrors (CM). A current mirror is a 3terminal circuit that, when an external bias current is provided at its input terminal, will produce an in-phase current of identical value at its output terminal.

The basic circuit and formulas for the CA3080's differential amplifier are shown in Fig. 3. The emitter current (I_{C}) of the amplifier is equal to the sum of the two collector currents (I_{A} and I_{B}). When $\mathrm{V}_{\text {IN }}$ is zero, I_{A} and I_{B} are equal and have a value of $\mathrm{I}_{\mathrm{C}} / 2$. When $V_{\text {IN }}$ has a value other than zero ($\pm 25 \mathrm{mV}$ maximum), I_{A} and I_{B} differ and produce an $I_{B}-I_{A}$ value of $V_{I N}$ $\times \mathrm{gm}$. The transconductance value is directly proportional to I_{C}, and at $25^{\circ} \mathrm{C}$ roughly equals $20 \times \mathrm{I}_{\mathrm{C}}$.

By itself, the circuit in Fig. 3 is not very useful. However, in an OTA such as the CA3080, the circuit is useful because by using a current mirror to externally control I_{C}, the amplifier's transconductance can then be controlled. By using three more current mirrors, the difference current between I_{A} and I_{B} can be made externally available.

There are two types of current mirrors. Some are current sinks, as shown in Fig. 4- a, and others are current sources, as shown in Fig. 4-b. When a current mirror source and current mirror sink are connected as shown in Fig. 5, and powered from a bi-polar power supply, they generate a differential current $\left(\mathrm{I}_{\text {SOURCE }}-\right.$ $\mathrm{I}_{\text {SINK }}$) in any load that is connected between the junction point and the circuit ground.

Figure 6 shows the actual circuit of a sinking-type current mirror. Transistor Q_{A}, which operates like a diode, is wired across the base-emitter junction of a second, closely-matched transistor. The mirror accuracy of that
circuit is less sensitive to the current gains of the transistors, and has improved (greater) output impedance than in a more-simple circuit.
Figure 7 shows how the differential amplifier and four current mirrors are connected in the CA3080 to make a practical OTA. Bias current ($\mathrm{I}_{\text {BIAS }}$) controls the emitter current, and thus the transconductance of the Q1/Q2 differential amplifier via current-mirror C . The collector current of Q1 is mirrored by current-mirror A and fed to the bias terminal of current-mirror D, and the collector current of Q2 is mirrored by current-mirror B and fed to the sink terminal of current-mirror D, so that the externally available output current is equal to $\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{A}}$.

If you refer back to Fig. 2-b, you will notice that Q 1 and Q 2 form the differential amplifier, D1 and Q3 make up current-mirror C , and cur-rent-mirror D is comprised of D6, Q10, and Q11. Current-mirror A (Q4-Q6, D2, and D3), and currentmirror B (Q7-Q9, D4, and D5) are slightly more complex than the others, using Darlington pairs of transistors and speed-up diodes to improve their performance.

Some finer points

All of the major operating parameters of the CA3080 are adjustable and depend on the value of $I_{\text {BIAS }}$. The maximum output current is equal to $\mathrm{I}_{\text {BIAS }}$, and the total operating current of the IC is double the $I_{\text {BIAS }}$ value. The input bias currents drawn by pins 2 and 3 when the IC is operating in the linear mode are each equal to approximately $\mathrm{I}_{\text {BIAS }} / 200$, with the actual values depending on the current gains of Q1 and Q2 within the chip.

The transconductance (Fig. 8-a) and the input and output impedances (Fig. 8-b) vary with $\mathrm{I}_{\text {BIAS }}$. Figure 8 shows typical parameter values when the IC is driven from a bi-polar 15 -volt

FIG. 7-THE CA3080 IS COMPRISED of one differential amplifier and four current mirrors.

FIG. 8-THE TRANSCONDUCTANCE (a) and the input and output resistances (b) of the CA3080 vary with the bias current.

FIG. 9-THIS DIFFERENTIAL AMPLIFIER has $40-\mathrm{dB}$ voltage gain.
supply at an ambient temperature of $25^{\circ} \mathrm{C}$. Therefore, at a bias current of $10 \mu \mathrm{~A}, \mathrm{gm}$ is typically $200 \mu \mathrm{mho}$, with an input resistance of 800 K and an output resistance of 700 megohms. At $1-\mathrm{mA}$ bias current, those values change to $20 \mathrm{mmho}, 15 \mathrm{~K}$, and 7 megohms respectively.

The output voltage of the IC depends on the values of $\mathrm{I}_{\text {BIAS }}$ and an external load resistor connected to the output (pin 6) of the device. If the
load impedance is infinite, the output can swing to within 1.5 volts of the positive supply and within 0.5 volt of the negative supply. If the impedance is not infinite, the peak output swing is limited to $\mathrm{I}_{\text {BIAS }} \times \mathrm{R}_{\mathrm{L}}$. Thus at a $10-\mu \mathrm{A}$ bias with a 100 K load, the output swing is 1 volt.

The slew rate and bandwidth of the IC depend on the value of $\mathrm{I}_{\text {BIAS }}$ and any external loading capacitor connected to pin 6 . The slew-rate value,

FIG. 10-AN AC-COUPLED 40-dB inverting amplifier.
in $V / \mu \mathrm{s}$, equals $\mathrm{I}_{\text {BIAS }} / \mathrm{C}_{\mathrm{L}}$, where C_{L} is the loading capacitance value in pF , and $I_{\text {BIAS }}$ is in $\mu \mathrm{A}$. With no external loading capacitor connected, the maximum slew rate of the CA3080 is about $50 \mathrm{~V} / \mu \mathrm{s}$.

Basic circuits

The CA3080 is very easy to use. Its $\mathrm{I}_{\text {BIAS }}$ terminal (pin 5) is internally connected to the negative supply (pin 4) by a base-emitter junction, so the biased voltage of the terminal is about 600 mV above that of pin 4. $\mathrm{I}_{\text {BIAS }}$ can be obtained by connecting pin 5 to either the ground line or the positive supply via a current-limiting resistor of suitable value.

Figures 9 and 10 show two ways of using the CA3080 as a linear amplifier with a voltage gain of about 40 dB. The circuit in Fig. 9 is a directcoupled differential amplifier, and Fig. 10 shows an AC-coupled inverting amplifier. Both designs operate from bi-polar 9 -volt supplies, so 17.4 volts is generated across bias-resistor R1, which feeds about $500 \mu \mathrm{~A}$ into pin 5 causing each IC to draw another 1 mA from their supply.

FIG. 11-THIS 20-dB MICRO-POWER inverting amplifier consumes very little power.

At a bias current of $500 \mu \mathrm{~A}$, the transconductance of the CA3080 is approximately 10 mmho . The outputs of Figs. 9 and 10 are loaded by a 10 K resistor (R2), and therefore provide an overall voltage gain of $10 \mathrm{mmho} \times$ $10 \mathrm{~K}=100$, or 40 dB . The peak current that can flow into the 10 K load is $500 \mu \mathrm{~A}$ (equal to $\mathrm{I}_{\text {BIAS }}$), so the peak output is 5 volts. The output is also loaded by a $180-\mathrm{pF}$ capacitor (Cl), giving the circuit a slew-rate limit of $500 \mu \mathrm{~A} / 180 \mathrm{pF}=2.8 \mathrm{~V} / \mu \mathrm{s}$. The output impedance of each circuit equals the R2 value of 10 K . Note that in those two circuits the IC is used in the

FIG. 12-A VARIABLE-GAIN AC amplifier has a gain that can range between $\times 5$ and $\times 100$.

FIG. 13-AN AMPLITUDE MODULATOR or 2-quadrant multiplier has unity gain.

FIG. 14-BOTH PHASE AND AMPLITUDE can be controlled by the modulation signal in this ring modulator or 4-quadrant multiplier.
open-loop mode, and that if the slew rate is not externally limited by Cl , the IC will operate at its maximum bandwidth and slew rate. Under those conditions the CA3080 may be excessively noisy.

In the circuit in Fig. 9, the differensistors R3 and R4, which help equalize the source impedances of the two signals and maintain the DC balance of the IC. The circuit in Fig. 10 has both inputs tied to ground via 15 K resistors and the input signal applied to one terminal only. With the input
connected to pin 2 , the circuit is a $40-$ dB inverting amplifier.

The voltage gains in Figs. 9 and 10 depend on the value of $\mathrm{I}_{\text {BIAS }}$, which in turn depends on the value of the supply voltage. The voltage gain of the CA3080 can be made almost independent of the $\mathrm{I}_{\text {BIAS }}$ and supply-voltage values by using conventional opamp techniques, as shown by the 20dB AC-coupled inverter circuit of Fig. 11 , which consumes a mere $150 \mu \mathrm{~A}$ from its bi-polar 9 -volt supply.

The circuit in Fig. 11 is wired like a conventional inverting amplifier, with
its voltage gain $\left(\mathrm{A}_{\mathrm{V}}\right)$ determined primarily by the $\mathrm{R} 2 / \mathrm{R} 3$ ratio (equal to 10 , or $20-\mathrm{dB}$). The gain equation is only valid when the value of an external load, R_{L}, is infinite. That's because the output impedance is equal to $\mathrm{R} 2 / \mathrm{A}_{\mathrm{V}}$, or 10 K , and any external load lessens that value and reduces the output of the circuit.

The main function of $\mathrm{I}_{\text {BIAS }}$ in the circuit of Fig. 11 is to determine the total operating current of the circuit and/or the maximum output swing. With the component values shown, $\mathrm{I}_{\text {BIAS }}$ has a value of $50 \mu \mathrm{~A}$, causing the circuit to consume a total of 150 μA. When R_{L} is infinite, the output is loaded only by R2, which has a value of 100 K , so the maximum output is 5 volts. If R_{L} has a value of 10 K , the maximum output voltage is limited to 0.5 volt. That circuit can therefore be designed to have any desired voltage gain and peak output, and since the IC is used in the closed-loop mode, external slew-rate limiting is therefore not required.

If the CA3080 is to be used as a high-gain DC amplifier, or as a widerange variable-gain amplifier, inputbias levels must be balanced to ensure that the output correctly tracks the input signals at all values of $\mathrm{I}_{\text {BIAS }}$. Figure 12 shows how to bias an inverting AC amplifier in which the voltage gain is variable from roughly $\times 5$ to $\times 100$ via R6, and the offset balance is pre-set via R7. The circuit is set up by adjusting R6 to its minimum value (maximum gain) and then trimming R7 to give zero DC output with no AC input signal applied.

Voltage-controlled gain

Some of the most useful applications for the CA3080 are in true micropower amplifier and oscillator circuits, and when important parameters are controlled by an external voltage. In the latter category, one major application is as a VCA or amplitude modulator, in which a carrier signal is fed to the input of the amplifier, and the output amplitude is controlled or modulated by another signal fed to the $\mathrm{I}_{\text {BIAS }}$ terminal. Figure 13 shows a practical version of such a circuit.

The circuit in Fig. 13 is a variablegain inverting amplifier. Input-bias resistors R1 and R2 have low values to minimize the noise levels of the IC and eliminate the need for external slew-rate limiting. Offset biasing is applied to the non-inverting input via

FIG. 15-A FAST INVERTING VOLTAGE comparator has a high output when its input falls below $\mathrm{V}_{\text {REF }}$

FIG. 16-A NON-INVERTING micropower voltage comparator has inputs that are sensitive to small changes.

FIG. 17-THIS SCHMITT-TRIGGER circuit has programmable trigger-thresholds and peak-output.
$\mathrm{R} 3 / \mathrm{R} 6$. The carrier signal is applied to the inverting pin of the CA3080 by the voltage divider $\mathrm{Rx} / \mathrm{R} 1$. When R_{X} has a value of 33 K as shown, and the modulation input terminal is tied to ground, the circuit basically has unity gain. The gain doubles when the modulation terminal is tied to +9 volts $(+\mathrm{V})$, and when the modulation terminal is tied to -9 volts $(-\mathrm{V})$ the circuit has roughly 80 dB of signal rejection.

The instantaneous polarity of the output signal of the circuit in Fig. 13 is determined entirely by the instantaneous polarity of the input sig-
nal. The amplitude of the output signal is determined by the product of the input and the gain-control values. That type of circuit is known as a 2 quadrant multiplier.

Figure 14 shows how the circuit in Fig. 13 can be modified so that it can be used as a ring-modulator or 4quadrant multiplier, in which the out-put-signal polarity depends on the polarities of both the input signal and the modulation signal.

The circuits of Figs. 13 and 14 are identical, except that in Fig. 14, re-sistor-network R_{Y} is connected between the input and output terminals. When the modulator input is tied to ground, the inverted signal flowing into R5 from the OTA's output is balanced by the non-inverted signal flowing into R5 from the input signal via R_{Y}. Therefore, zero volts is generated across R5. If the modulation input goes to +V , the output of the OTA exceeds the current of the R_{Y} network, and an inverted gain-controlled output is obtained. If the modulation input is -V , on the other hand, the output current of R_{Y} exceeds that of the OTA, and a non-inverted gaincontrolled output is obtained. So, both the phase and the amplitude of
the output signal of the 4 -quadrant multiplier circuit are controlled by the modulation signal. The circuit can be used as a ring modulator by feeding independent AC signals to the two inputs, or as a frequency doubler by feeding identical sine-wave signals to the two inputs.

Note that with the R_{X} and R_{Y} values shown in Fig. 14, the circuit has a voltage gain of 0.5 when the modulation terminal is tied to $+V$ or $-V$. The gain doubles if the values of R_{X} and R_{Y} are halved. Also note that the Fig. 13 and Fig. 14 circuits each have a high output impedance, and that in practice an output buffer must be added between the output terminal and the outside world.

Comparator circuits

The CA3080 can easily be used as a programmable or micropower voltage comparator. Figure 15 shows the basic circuit of a fast, programmable, inverting comparator, in which a reference voltage $\left(\mathrm{V}_{\mathrm{REF}}\right)$ is applied to the noninverting terminal and the test input is applied to the inverting terminal. The circuit's operation is such that the output is driven high when the test input is below $\mathrm{V}_{\text {REF }}$, and is driven low when the test input is above $\mathrm{V}_{\text {REF }}$ The circuit can be used as a noninverting comparator by reversing the input connections of the IC.

With the component values shown in Fig. 15, the $\mathrm{I}_{\text {BIAS }}$ current is several hundred $\mu \mathrm{A}$, so the device has a slew rate of about $20 \mathrm{~V} / \mu \mathrm{s}$, and operates as a fast comparator. When the test voltage and $\mathrm{V}_{\mathrm{REF}}$ are almost identical, the IC operates as a linear amplifier with a voltage gain of $\mathrm{gm} \times \mathrm{R} 2$ or about 200 . When the two input voltages are significantly different, the output voltage is limited to values determined by the values of $\mathrm{I}_{\text {BIAS }}$ and R2. In Fig. 15, the output is limited to about 7 volts when R 2 has a value of 10 K , or about 700 mV when R 2 has a value of 1 K .

The circuit in Fig. 15 can be modified so that it is an ultra-sensitive micropower comparator, as shown in Fig. 16. That circuit typically consumes only $50 \mu \mathrm{~A}$ but has an output that fully swings between the +V supply and the $-V$ supply, and can provide drive currents of several mA . In Fig. 16 the CA3080 is biased at about $18 \mu \mathrm{~A}$ via R1 but has its output fed to the near-infinite input impedance of a CMOS inverter stage. That

FIG. 18-A MICRO-POWER Schmitt trigger is shown here.

FIG. 19-A LOW-POWER astable multivibrator or square-wave generator.

FIG. 20-THIS VARIABLE DUTY-CYCLE oscillator has an output that can be varied from 10:1 to 1:10. D
combination gives the circuit an overall voltage gain of about 130 dB , so that input-voltage changes of only a few $\mu \mathrm{V}$ are enough to switch the output from one supply level to the other.

Schmitt-trigger circuits

The voltage comparator circuit of Fig. 15 can be used as a programmable Schmitt trigger by connecting the non-inverting reference terminal directly to the output of the CA3080, as shown in Fig. 17. In that case, when the output is high, a positive reference value of $I_{\text {BIAS }} \times R 2$ is generated. When $\mathrm{V}_{\text {IN }}$ exceeds that value, the output regeneratively switches low and generates a negative reference voltage
of $\mathrm{I}_{\text {BIAS }} \times$ R2, and when $\mathrm{V}_{\text {IN }}$ falls below that value, the output is regeneratively switched high and once more generates a positive reference voltage of $I_{\text {BIAS }} \times R 2$. Therefore, the trigger thresholds, and also the peak output voltages of the Schmitt circuit, can be precisely controlled or programmed by changing the value of either $\mathrm{I}_{\text {BIAS }}$ or R2.

Figure 18 shows an another type of Schmitt trigger, in which the output fully switches between the supplyvoltage values. The switching-threshold values are determined by the R1/ R2 ratio and the supply-voltage values, and is equal to $+\mathrm{V} \times$ $\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)$.

Astable circuits

The Schmitt-trigger circuit in Fig. 18 can be used as an astable multivibrator or square-wave generator circuit by connecting its output to the non-inverting input terminal via an RC time-constant network, as shown in Fig. 19. The output of that circuit fully switches between the supplyvoltage values, is approximately symmetrical, and has a frequency that is determined by the values of R3, Cl, and the $\mathrm{R} 1 / \mathrm{R} 2$ ratio. The operation is such that, when the output is high, Cl charges via R 3 until the Cl voltage reaches the positive reference-voltage value determined by the $\mathrm{R} 1 / \mathrm{R} 2$ ratio. At that value the output switches low. Capacitor Cl then discharges via R3 until the Cl voltage reaches the negative reference-voltage value determined by the $\mathrm{R} 1 / \mathrm{R} 2$ ratio. at that value the output switches high again, and the whole process then repeats.

Finally, Fig. 20 shows how the circuit in Fig. 19 can be modified to have an output waveform with a variable duty cycle. In that case, Cl alternately charges via D1, R3, and the left half of R5, and discharges via D2, R3, and the right half of R5, to provide a duty-cycle ratio that is fully variable from 10:1 to 1:10 via R5.

Note that in the two astable circuits of Figs. 19 and 20, the CA3080 is biased at only a few $\mu \mathrm{A}$, and the total current consumption of each design is determined primarily by the series values of R1 and R2, and by the value of R3. In practice, total current consumption of only a few tens of $\mu \mathrm{A}$ can easily be achieved.

