
# Inverting op amp with inverting positive reference voltage circuit

#### **Design Goals**

| Input Output      |                   | put               | Supply            |                 |                 |                  |
|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|------------------|
| V <sub>iMin</sub> | V <sub>iMax</sub> | V <sub>oMin</sub> | V <sub>oMax</sub> | V <sub>cc</sub> | V <sub>ee</sub> | V <sub>ref</sub> |
| –5V               | -1V               | 0.05V             | 3.3V              | 5V              | 0V              | 5V               |

#### **Design Description**

This design uses an inverting amplifier with an inverting positive reference to translate an input signal of -5V to -1V to an output voltage of 3.3V to 0.05V. This circuit can be used to translate a negative sensor output voltage to a usable ADC input voltage range.



- 1. Use op amp linear output operating range. Usually specified under  $A_{OL}$  test conditions.
- 2. Common mode range must extend down to or below ground.
- 3. V<sub>ref</sub> output must be low impedance.
- 4. Input impedance of the circuit is equal to R<sub>2</sub>.
- Choose low-value resistors to use in the feedback. It is recommended to use resistor values less than 100kΩ. Using high-value resistors can degrade the phase margin of the amplifier and introduce additional noise in the circuit.
- 6. The cutoff frequency of the circuit is dependent on the gain bandwidth product (GBP) of the amplifier. Additional filtering can be accomplished by adding a capacitor in parallel to R<sub>1</sub>. Adding a capacitor in parallel with R<sub>1</sub> will also improve stability of the circuit if high-value resistors are used.



# **Design Steps**

$$V_{o} = -V_{i} \times \left(\frac{R_{1}}{R_{2}}\right) - V_{ref} \times \left(\frac{R_{1}}{R_{3}}\right)$$

1. Calculate the gain of the input signal.

$$G_{input} = \frac{V_{o\_max} - V_{o\_min}}{V_{i\_max} - V_{i\_min}} = \frac{3.3V - 0.05V}{-1V - (-5~V)} = 0.8125\frac{V}{V}$$

2. Calculate  $R_1$  and  $R_2$ .

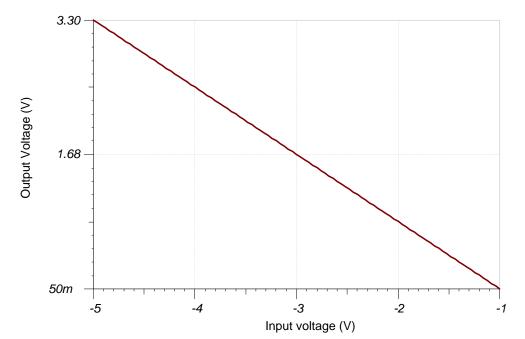
Choose  $R_1 = 845\Omega$ 

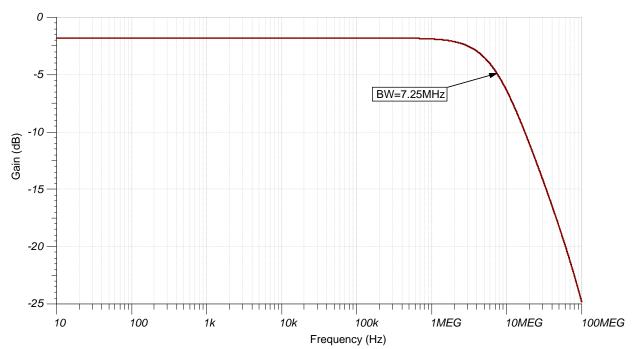
$$R_2 = rac{R_1}{G_{input}} = rac{R_1}{0.8125 rac{V}{V}} = 1.04$$
 k $\Omega$ 

3. Calculate the gain of the reference voltage required to offset the output.

$$\begin{split} G_{ref} &= \frac{R_1}{R_3} & ( \ ) & ( \ ) \\ &- V_{i\_min} \star \frac{R_1}{R_2} - V_{ref} \star \frac{R_1}{R_3} = V_{o\_min} \\ &\frac{R_1}{R_3} = \frac{V_{o\_min} + V_{i\_min} \star \frac{R_1}{R_2}}{-V_{ref}} = \frac{0.05V + -1 V \frac{845\Omega}{1.04K\Omega}}{-5} = 0.1525 \frac{V}{V} \end{split}$$

4. Calculate R<sub>3</sub>.


$$R_3 = \frac{R_1}{G_{ref}} = \frac{845\Omega}{0.1525_V^{\vee}} = 5.54 \text{ k}\Omega \approx 5.56 \text{ k}\Omega$$


Ţexas

**Design Simulations** 

TRUMENTS

**DC Simulation Results** 





# **AC Simulation Results**

144 Inverting op amp with inverting positive reference voltage circuit



### **Design References**

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOC511.

See Designing Gain and Offset in Thirty Seconds .

# **Design Featured Op Amp**

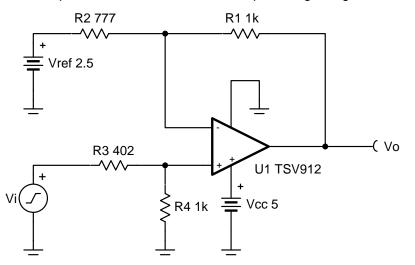
| TLV9062                    |              |  |  |  |
|----------------------------|--------------|--|--|--|
| V <sub>ss</sub>            | 1.8V to 5.5V |  |  |  |
| V <sub>inCM</sub>          | Rail-to-rail |  |  |  |
| V <sub>out</sub>           | Rail-to-rail |  |  |  |
| V <sub>os</sub>            | 0.3mV        |  |  |  |
| l <sub>q</sub>             | 538µA        |  |  |  |
| I <sub>b</sub>             | 0.5pA        |  |  |  |
| UGBW                       | 10MHz        |  |  |  |
| SR                         | 6.5V/µs      |  |  |  |
| #Channels                  | 1, 2, 4      |  |  |  |
| www.ti.com/product/tlv9062 |              |  |  |  |

# **Design Alternate Op Amp**

| OPA197                    |              |  |  |
|---------------------------|--------------|--|--|
| V <sub>ss</sub>           | 4.5V to 36V  |  |  |
| V <sub>inCM</sub>         | Rail-to-rail |  |  |
| V <sub>out</sub>          | Rail-to-rail |  |  |
| V <sub>os</sub>           | 25μV         |  |  |
| l <sub>q</sub>            | 1mA          |  |  |
| I <sub>b</sub>            | 5pA          |  |  |
| UGBW                      | 10MHz        |  |  |
| SR                        | 20V/µs       |  |  |
| #Channels                 | 1, 2, 4      |  |  |
| www.ti.com/product/opa197 |              |  |  |

| Revision | Date          | Change                                                                                                                                 |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A        | February 2019 | Downscale the title and changed title role to 'Amplifiers'.<br>Added links to circuit cookbook landing page and SPICE simulation file. |




# Non-inverting op amp with inverting positive reference voltage circuit

#### **Design Goals**

| Input Output      |                   | Supply            |                   |                 |                 |                  |
|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|------------------|
| V <sub>iMin</sub> | V <sub>iMax</sub> | V <sub>oMin</sub> | V <sub>oMax</sub> | V <sub>cc</sub> | V <sub>ee</sub> | V <sub>ref</sub> |
| 2V                | 5V                | 0.05V             | 4.95V             | 5V              | 0V              | 2.5V             |

#### **Design Description**

This design uses a non-inverting amplifier with an inverting positive reference to translate an input signal of 2V to 5V to an output voltage of 0.05V to 4.95V. This circuit can be used to translate a sensor output voltage with a positive slope and offset to a usable ADC input voltage range.



- 1. Use op amp linear output operating range. Usually specified under  $A_{OL}$  test conditions.
- 2. Check op amp input common mode voltage range. The common mode voltage varies with the input voltage.
- 3. V<sub>ref</sub> must be low impedance.
- 4. Input impedance of the circuit is equal to the sum of  $R_3$  and  $R_4$ .
- Choose low-value resistors to use in the feedback. It is recommended to use resistor values less than 100kΩ. Using high-value resistors can degrade the phase margin of the amplifier and introduce additional noise in the circuit.
- 6. The cutoff frequency of the circuit is dependent on the gain bandwidth product (GBP) of the amplifier.
- 7. Adding a capacitor in parallel with R<sub>1</sub> will improve stability of the circuit if high-value resistors are used.

#### **Design Steps**

$$V_{o} = V_{i} \times (\frac{R_{4}}{R_{3} + R_{4}})(\frac{R_{1} + R_{2}}{R_{2}}) - V_{ref} \times (\frac{R_{1}}{R_{2}})$$

1. Calculate the gain of the input to produce the largest output swing.

$$\begin{split} & \mathsf{V}_{o\_max} - \mathsf{V}_{o\_min} = (\mathsf{V}_{i\_max} - \mathsf{V}_{i\_min})(\frac{\mathsf{R}_4}{\mathsf{R}_3 + \mathsf{R}_4})(\frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2}) \\ & \frac{\mathsf{V}_{o\_max} - \mathsf{V}_{o\_min}}{\mathsf{V}_{b\_max} - \mathsf{V}_{b\_min}} = \frac{\mathsf{R}_4}{\mathsf{R}_3 + \mathsf{R}_4} \cdot \frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2} \\ & \frac{4.95 \mathsf{V} - 0.05 \mathsf{V}}{5 \mathsf{V} - 2 \mathsf{V}} = \frac{\mathsf{R}_4}{\mathsf{R}_3 + \mathsf{R}_4} \cdot \frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2} \\ & 1.633 \frac{\mathsf{V}}{\mathsf{V}} = \frac{\mathsf{R}_4}{\mathsf{R}_3 + \mathsf{R}_4} \cdot \frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2} \end{split}$$

 Select a value for R<sub>1</sub> and R<sub>4</sub> and insert the values into the previous equation. The other two resistor values must be solved using a system of equations. The proper output swing and offset voltage cannot be calculated if more than two variables are selected.

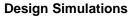
$$\begin{array}{rll} R_1=R_4=1 & k\Omega & (\\ 1.633\frac{V}{V}=& \frac{1 \ k\Omega}{R_3+1 \ k\Omega} & \frac{1 \ k\Omega+R_2}{R_2} \end{array} \end{array}$$

3. Solve the previous equation for R  $_3$  in terms of R  $_2$ .

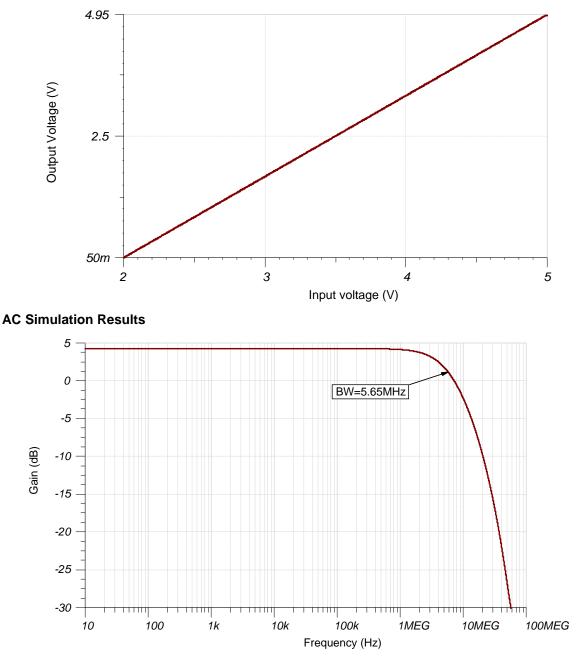
$$R_{3} = \frac{1 M\Omega + (1 k\Omega \times R_{2})}{1.633 \times R_{2}} - 1 k\Omega$$

4. Select any point along the transfer function within the linear output range of the amplifier to set the proper offset voltage at the output (for example, the minimum input and output voltage).

5. Insert  $R_3$  from step 3 into the equation from step 4 and solve for  $R_2$ .


$$\begin{array}{l} 0.05V = 2V \times (\frac{1 \text{ k}\Omega}{\frac{1 \text{ }\Omega\Omega + 1 \text{ }\kappa\Omega \times R_2}{1.633 \times R_2} - 1 \text{ }\kappa\Omega + 1 \text{ }\kappa\Omega}})(\frac{1 \text{ }\kappa\Omega + R_2}{R_2}) - V_{\text{ref}} \times (\frac{1 \text{ }\kappa\Omega}{R_2}) \\ R_2 = 777.2\Omega \approx 777\Omega \end{array}$$

6. Insert  $R_2$  calculation from step 5, and solve for  $R_3$ .


$$\begin{split} R_{3} &= \frac{1 \ M\Omega + (1 \ k\Omega \times R_{2})}{1.633 \times R_{2}} - 1 \ k\Omega & () \\ R_{3} &= \frac{1 \ M\Omega + 1 \ k\Omega \times 777\Omega}{1.633 \times 777\Omega} - 1 \ k\Omega = 400 \ .49\Omega \approx 402\Omega \end{split}$$

TEXAS INSTRUMENTS

#### www.ti.com



**DC Simulation Results** 





### **Design References**

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit SPICE simulation file SBOC512.

See TI Precision Lab Videos on Input and Output Limitations.

# **Design Featured Op Amp**

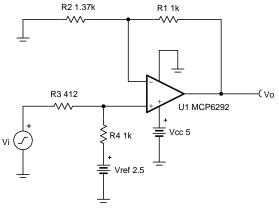
| TSV912                    |              |  |  |  |
|---------------------------|--------------|--|--|--|
| V <sub>ss</sub>           | 2.5V to 5.5V |  |  |  |
| V <sub>inCM</sub>         | Rail-to-rail |  |  |  |
| V <sub>out</sub>          | Rail-to-rail |  |  |  |
| V <sub>os</sub>           | 0.3mV        |  |  |  |
| l <sub>q</sub>            | 550µA        |  |  |  |
| l <sub>b</sub>            | 1pA          |  |  |  |
| UGBW                      | 8MHz         |  |  |  |
| SR                        | 4.5V/µs      |  |  |  |
| #Channels                 | 1, 2, 4      |  |  |  |
| www.ti.com/product/tsv912 |              |  |  |  |

# **Design Alternate Op Amp**

| OPA191            |                |  |
|-------------------|----------------|--|
| V <sub>ss</sub>   | 4.5V to 36V    |  |
| V <sub>inCM</sub> | Rail-to-rail   |  |
| V <sub>out</sub>  | Rail-to-rail   |  |
| V <sub>os</sub>   | 5µV            |  |
| lq                | 140µA/Ch       |  |
| I <sub>b</sub>    | 5pA            |  |
| UGBW              | 2.5MHz         |  |
| SR                | 5.5V/µs        |  |
| #Channels         | 1, 2, 4        |  |
| www.ti.com/p      | product/opa191 |  |

| Revision | Date          | Change                                                                                                                                 |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A        | February 2019 | Downscale the title and changed title role to 'Amplifiers'.<br>Added links to circuit cookbook landing page and SPICE simulation file. |




# Non-inverting op amp with non-inverting positive reference voltage circuit

#### **Design Goals**

| Inj               | out               | Out               | put               |                 | Supply          |                  |
|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|------------------|
| V <sub>iMin</sub> | V <sub>iMax</sub> | V <sub>oMin</sub> | V <sub>oMax</sub> | V <sub>cc</sub> | V <sub>ee</sub> | V <sub>ref</sub> |
| -1V               | 3V                | 0.05V             | 4.95V             | 5V              | 0V              | 2.5V             |

#### **Design Description**

This design uses a non-inverting amplifier with a non-inverting positive reference to translate an input signal of -1V to 3V to an output voltage of 0.05V to 4.95V. This circuit can be used to translate a sensor output voltage with a positive slope and negative offset to a usable ADC input voltage range.



Copyright © 2018, Texas Instruments Incorporated

- 1. Use op amp linear output operating range. Usually specified under  $A_{OL}$  test conditions.
- 2. Check op amp input common mode voltage range.
- 3. V<sub>ref</sub> output must be low impedance.
- 4. Input impedance of the circuit is equal to the sum of  $R_3$  and  $R_4$ .
- Choose low-value resistors to use in the feedback. It is recommended to use resistor values less than 100kΩ. Using high-value resistors can degrade the phase margin of the amplifier and introduce additional noise in the circuit.
- 6. The cutoff frequency of the circuit is dependent on the gain bandwidth product (GBP) of the amplifier.
- 7. Adding a capacitor in parallel with  $R_1$  will improve stability of the circuit if high-value resistors are used.

#### **Design Steps**

$$\mathsf{V}_{\mathsf{o}} = \mathsf{V}_{\mathsf{i}} \times (\frac{\mathsf{R}_4}{\mathsf{R}_3 + \mathsf{R}_4}) (\frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2}) + \mathsf{V}_{\mathsf{ref}} \times (\frac{\mathsf{R}_3}{\mathsf{R}_3 + \mathsf{R}_4}) (\frac{\mathsf{R}_1 + \mathsf{R}_2}{\mathsf{R}_2})$$

1. Calculate the gain of the input voltage to produce the desired output swing.

$$\begin{split} G_{input} &= (\frac{R_4}{R_3 + R_4})(\frac{R_1 + R_2}{R_2}) \qquad (\\ V_{o\_max} - V_{o\_min} &= V_{i\_max} - V_{i\_min} \quad \frac{R_4}{R_3 + R_4} \quad \frac{R_1 + R_2}{R_2} \\ &\frac{V_{o\_max} - V_{o\_min}}{V_{i\_max} - V_{i\_min}} &= \frac{R_4}{R_3 + R_4} \quad \frac{R_1 + R_2}{R_2} \\ &\frac{4.95V - 0.05V}{3V_{-} - 1V} &= \frac{R_4}{R_3 + R_4} \quad \frac{R_1 + R_2}{R_2} \\ &1.225V &= \frac{R_4}{R_3 + R_4} \quad \frac{R_1 + R_2}{R_2} \end{split}$$

 Select a value for R<sub>1</sub> and R<sub>4</sub> and insert the values into the previous equation. The other two resistor values must be solved using a system of equations. The proper output swing and offset voltage cannot be calculated if more than two variables are selected.

3. Solve the previous equation for  $R_3$  in terms of  $R_2$ .

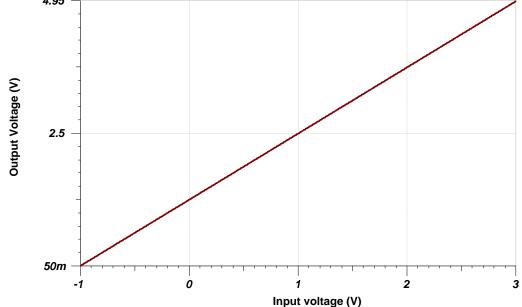
$$R_{3} = \frac{1 M_{\Omega} + (1 k_{\Omega} \times R_{2})}{1.225 \times R_{2}} - 1 k_{\Omega}$$

4. Select any point along the transfer function within the linear output range of the amplifier to set the proper offset voltage at the output (for example, the minimum input and output voltage).

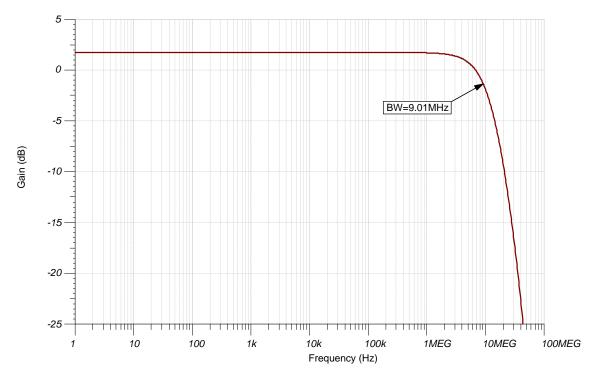
$$\begin{split} V_{o\_min} &= V_{i\_min} \star \left(\frac{R_4}{R_3 + R_4}\right) \left(\frac{R_1 + R_2}{R_2}\right) + V_{ref} \star \left(\frac{R_3}{R_3 + R_4}\right) \left(\frac{R_1 + R_2}{R_2}\right) \\ 0.05V &= -1 \quad V \star \quad \frac{1 \ k\Omega}{R_3 + 1 \ k\Omega} \quad \frac{1 \ k\Omega + R_2}{R_2} + 2.5V \star \quad \frac{R_3}{R_3 + 1 \ k\Omega} \quad \frac{1 \ k\Omega + R_2}{R_2} \end{split}$$

5. Insert R<sub>3</sub> into the equation from step 1 and solve for R<sub>2</sub>.

$$0.05V = -1 \quad V \times (\frac{1 \ k\Omega}{\frac{1 \ M\Omega + 1 \ k\Omega}{1.225 \ \kappa_{R_{2}}} - 1 \ k\Omega + 1 \ k\Omega}})(\frac{1 \ k\Omega + R_{2}}{R_{2}}) + 2.5V \times (\frac{\frac{1 \ M\Omega + 1 \ k\Omega}{1.225 \ \kappa_{R_{2}}} - 1 \ k\Omega}{\frac{1 \ M\Omega + 1 \ k\Omega}{1.225 \ \kappa_{R_{2}}} - 1 \ k\Omega + 1 \ k\Omega}})(\frac{1 \ k\Omega + R_{2}}{R_{2}}) = 1.5V \times (\frac{1 \ M\Omega + 1 \ k\Omega}{1.225 \ \kappa_{R_{2}}} - 1 \ k\Omega + 1 \ k\Omega})(\frac{1 \ k\Omega + R_{2}}{R_{2}}) = 1.5V \times (\frac{1 \ M\Omega + 1 \ k\Omega}{1.225 \ \kappa_{R_{2}}} - 1 \ k\Omega + 1 \ k\Omega})(\frac{1 \ k\Omega + R_{2}}{R_{2}})$$


6. Insert  $R_2$  into the equation from step 1 to solve for  $R_3$ .

$$\begin{split} R_{3} &= \frac{1 \ M\Omega + 1 \ k\Omega \times (1370\Omega)}{1.225 \times (1370\Omega)} - 1 \ k\Omega \\ R_{3} &= 412 \ . \ 18\Omega \approx 412\Omega \end{split}$$


www.ti.com **Design Simulations DC Simulation Results** 4.95 Output Voltage (V) 2.5

Ţexas

STRUMENTS







Non-inverting op amp with non-inverting positive reference voltage circuit 152



### **Design References**

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOC513.

See Designing Gain and Offset in Thirty Seconds.

# **Design Featured Op Amp**

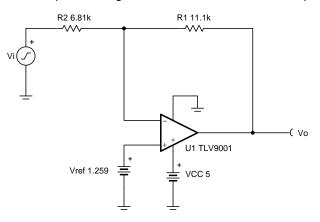
| MCP6292                    |              |  |  |  |
|----------------------------|--------------|--|--|--|
| V <sub>ss</sub>            | 2.4V to 5.5V |  |  |  |
| V <sub>inCM</sub>          | Rail-to-rail |  |  |  |
| V <sub>out</sub>           | Rail-to-rail |  |  |  |
| V <sub>os</sub>            | 0.3mV        |  |  |  |
| l <sub>q</sub>             | 600µA        |  |  |  |
| l <sub>b</sub>             | 1pA          |  |  |  |
| UGBW                       | 10MHz        |  |  |  |
| SR                         | 6.5V/µs      |  |  |  |
| #Channels                  | 1, 2, 4      |  |  |  |
| www.ti.com/product/MCP6292 |              |  |  |  |

# **Design Alternate Op Amp**

| OPA388                    |              |  |  |  |
|---------------------------|--------------|--|--|--|
| V <sub>ss</sub>           | 2.5V to 5.5V |  |  |  |
| V <sub>inCM</sub>         | Rail-to-rail |  |  |  |
| V <sub>out</sub>          | Rail-to-rail |  |  |  |
| V <sub>os</sub>           | 0.25µV       |  |  |  |
| Ι <sub>q</sub>            | 1.9mA        |  |  |  |
| I <sub>b</sub>            | 30pA         |  |  |  |
| UGBW                      | 10MHz        |  |  |  |
| SR                        | 5V/µs        |  |  |  |
| #Channels                 | 1, 2, 4      |  |  |  |
| www.ti.com/product/opa388 |              |  |  |  |

| Revision | Date         | Change                                                                                                                                 |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
| A        | January 2019 | Downscale the title and changed title role to 'Amplifiers'.<br>Added links to circuit cookbook landing page and SPICE simulation file. |




# Inverting op amp with non-inverting positive reference voltage circuit

#### **Design Goals**

| Input             |                   | Output            |                   | Supply          |                 |                  |
|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|------------------|
| V <sub>iMin</sub> | V <sub>iMax</sub> | V <sub>oMin</sub> | V <sub>oMax</sub> | V <sub>cc</sub> | V <sub>ee</sub> | V <sub>ref</sub> |
| -1V               | 2V                | 0.05V             | 4.95V             | 5V              | 0V              | 1.259V           |

#### **Design Description**

This design uses an inverting amplifier with a non-inverting positive reference voltage to translate an input signal of -1V to 2V to an output voltage of 0.05V to 4.95V. This circuit can be used to translate a sensor output voltage with a positive slope and negative offset to a usable ADC input voltage range.



- 1. Use op amp linear output operating range. Usually specified under  $A_{OL}$  test conditions.
- 2. Amplifier common mode voltage is equal to the reference voltage.
- 3. V<sub>ref</sub> can be created with a voltage divider.
- 4. Input impedance of the circuit is equal to R<sub>2</sub>.
- Choose low-value resistors to use in the feedback. It is recommended to use resistor values less than 100kΩ. Using high-value resistors can degrade the phase margin of the amplifier and introduce additional noise in the circuit.
- 6. The cutoff frequency of the circuit is dependent on the gain bandwidth product (GBP) of the amplifier. Additional filtering can be accomplished by adding a capacitor in parallel to R<sub>1</sub>. Adding a capacitor in parallel with R<sub>1</sub> will also improve stability of the circuit, if high-value resistors are used.

### TEXAS INSTRUMENTS

www.ti.com

# **Design Steps**

 $V_{o} = - \text{Vi} \times (\frac{R_{1}}{R_{2}}) + V_{\text{ref}} \times (1 + \frac{R_{1}}{R_{2}})$ 

1. Calculate the gain of the input signal.

$$\begin{split} G_{input} &= -\frac{R_1}{R_2} & ( ) ( ) \\ V_{o\_max} - V_{o\_min} &= V_{i\_max} - V_{i\_min} - \frac{R_1}{R_2} \\ &- \frac{R_1}{R_2} &= -\frac{V_{o\_max} - V_{o\_min}}{V_{i\_max} - V_{i\_min}} &= -\frac{4.95V - 0.05V}{2V - -1 V} &= -1.633\frac{V_{o\_max}}{V_{o\_max}} \end{split}$$

2. Select  $R_2$  and calculate  $R_1$ .

$$R_2 = 6.81 \ k\Omega$$

$$R_1 = G_{input} \times R_2 = 1.633 \frac{V}{V} \times 6.81 \quad k\Omega = 11.123 k\Omega \approx 11.1 \quad k\Omega \quad (Standard Value)$$

3. Calculate the reference voltage.

$$\begin{split} V_{o\_min} &= - V_{i\_max} \star (\frac{R_1}{R_2}) + V_{ref} \star (1 + \frac{R_1}{R_2}) \\ 0.05V &= - 2V \star \frac{11.11 \text{ k}\Omega}{6.81 \text{ k}\Omega} + V_{ref} \star 1 + \frac{11.11 \text{ k}\Omega}{6.81 \text{ k}\Omega} \\ V_{ref} &= \frac{V_{o\_min} + V_{i\_max} \star \frac{R_1}{R_2}}{1 + \frac{R_1}{R_2}} \frac{0.05V + 2V \star \frac{11.11 \text{ k}\Omega}{6.81 \text{ k}\Omega}}{1 + \frac{11.11 \text{ k}\Omega}{6.81 \text{ k}\Omega}} = 1.259V \end{split}$$

www.ti.com **Design Simulations DC Simulation Results** 4.95 Output Voltage (V) 2.5 50m 0 -1 1 2 Input voltage (V) **AC Simulation Results** 5 0 BW = 590kHz -5 Gain (dB) -10 -15 -20 -25 111 10 1MEG 10MEG 1 100 1k 10k 100k Frequency (Hz)

Texas

TRUMENTS



#### **Design References**

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOC514.

See the Designing gain and offset in thirty seconds application report.

# Design Featured Op Amp

| TLV9001                    |              |  |  |  |
|----------------------------|--------------|--|--|--|
| V <sub>ss</sub>            | 1.8V to 5.5V |  |  |  |
| V <sub>inCM</sub>          | Rail-to-rail |  |  |  |
| V <sub>out</sub>           | Rail-to-rail |  |  |  |
| V <sub>os</sub>            | 0.4mV        |  |  |  |
| l <sub>q</sub>             | 60µA         |  |  |  |
| I <sub>b</sub>             | 5рА          |  |  |  |
| UGBW                       | 1MHz         |  |  |  |
| SR                         | 2V/µs        |  |  |  |
| #Channels                  | 1, 2, 4      |  |  |  |
| www.ti.com/product/tlv9002 |              |  |  |  |

# **Design Alternate Op Amp**

| OPA376            |                |  |  |  |
|-------------------|----------------|--|--|--|
| V <sub>ss</sub>   | 2.2V to 5.5V   |  |  |  |
| V <sub>inCM</sub> | Rail-to-rail   |  |  |  |
| V <sub>out</sub>  | Rail-to-rail   |  |  |  |
| V <sub>os</sub>   | 5µV            |  |  |  |
| l <sub>q</sub>    | 760µA          |  |  |  |
| I <sub>b</sub>    | 0.2pA          |  |  |  |
| UGBW              | 5.5MHz         |  |  |  |
| SR                | 2V/µs          |  |  |  |
| #Channels         | 1, 2, 4        |  |  |  |
| www.ti.com/       | product/opa376 |  |  |  |

| Revision | Date          | Change                                                                                                                                 |  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| A        | February 2019 | Downscale the title and changed title role to 'Amplifiers'.<br>Added links to circuit cookbook landing page and SPICE simulation file. |  |