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Ask the Applications Engineer—28
By Eamon Nash*

LOGARITHMIC AMPLIFIERS EXPLAINED
Q. I’ve just been reading data sheets of some recently released Analog

Devices log amps and I’m still a little confused about what exactly
a log amp does.

A. You’re not alone. Over the years, I have had to deal with lots
of inquiries about the changing emphasis on functions that
log amps perform and radically different design concepts. Let
me start by asking you, what do you expect to see at the output
of a log amp?

Q. Well, I suppose that I would expect to see an output proportional to
the logarithm of the input voltage or current, as you describe in the
Nonlinear Circuits Handbook| <http://www.analog.com/
publications/magazines/Dialogue/Anniversary/books.html> and the
Linear Design Seminar Notes| <http://www.analog.com/
publications/press/misc/press_123094.html>.

A. Well, that’s a good start but we need to be more specific. The
term log amp, as it is generally understood in communications
technology, refers to a device which calculates the log of an
input signal’s envelope. What does that mean in practice? Take
a look a the scope photo below. This shows a 10-MHz sine
wave modulated by a 100-kHz triangular wave and the gross
logarithmic response of the AD8307, a 500-MHz 90-dB log
amp. Note that the input signal on the scope photo consists of
many cycles of the 10-MHz signal, compressed together, using
the time/div knob of the oscilloscope. We do this to show the
envelope of the signal, with its much slower repetition
frequency of 100 kHz. As the envelope of the signal increases
linearly, we can see the characteristic “log (x)” form in the
output response of the log amp. In contrast, if our measurement
device were a linear envelope detector (a filtered rectified
output), the output would simply be a tri-wave.
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Q. So I don’t see the log of the instantaneous signal?

A. That’s correct, and it’s the source of much of the confusion.
The log amp gives an indication of the instant-by-instant low-
frequency changes in the envelope, or amplitude, of the signal
in the log domain in the same way that a digital voltmeter, set
to “ac volts,” gives a steady (linear) reading when the input is
connected to a constant amplitude sine wave and follows any
adjustments to the amplitude. A device that calculates the

instantaneous log of the input signal is quite different, especially
for bipolar signals.

On that point, let’s digress for a moment to consider such a
device. Think about what would happen when an ac input signal
crosses zero and goes negative. Remember, the mathematical
function, log x, is undefined for x real and less than or equal to
zero, or –x greater than or equal to zero (see figure).
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However, as the figure shows, the inverse hyperbolic sine,
sinh–1 x, which passes symmetrically through zero, is a good
approximation to the combination of log 2x and minus log
(–2x), especially for large values of |x|. And yes, it is possible
to build such a log amp; in fact, Analog Devices many years
ago manufactured and sold Model 752 N & P temperature-
compensated log diode modules, which—in complementary
feedback pairs—performed that function. Such devices, which
calculate the instantaneous log of the input signal are called
baseband log amps (the term “true log amp” is also used). The
focus of this discussion, however, is on envelope-detecting
log amps, also referred to as demodulating log amps, which
have interesting applications in RF and IF circuitry for
communications.

Q. But, from what you have just said, I would imagine that a log amp
is generally not used to demodulate signals?

A. Yes, that is correct. The term demodulating came to be applied
to this type of device because a log amp recovers the log of the
envelope of a signal in a process somewhat like that of
demodulating AM signals.

In general, the principal application of log amps is to measure
signal strength, as opposed to detecting signal content. The log
amp’s output signal, which can represent a many-decade
dynamic range of high-frequency input signal amplitudes by a
relatively narrow range, is typically used to regulate gain. The
classic example of this is using a log amp in an automatic gain
control loop, to regulate the gain of a variable-gain amplifier.
The receiver of a cellular base station, for example, might use
the signal from a log amp to regulate the receiver gain. In
transmitters, log amps are also used to measure and regulate
transmitted power.

However, there are some applications where a log amp is used
to demodulate a signal. The figure shows a received signal that
has been modulated using amplitude shift keying (ASK). This
simple modulation scheme, similar to early transmissions of
radar pulses, conveys digital information by transmitting a series
of RF bursts (logic 1 = burst, logic 0 = no burst). When this
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signal is applied to a log amp, the output is a pulse train which
can be applied to a comparator to give a digital output. Notice
that the actual amplitude of the burst is of little importance;
we only want to detect its presence or absence. Indeed, it is
the log amp’s ability to convert a signal which varies over a
large dynamic range (10 mV to 1 V in this case) into one that
varies over a much smaller range (1 V to 3 V) that makes the
use of a log amp so appealing in this application.
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Q. Can you explain briefly how a log amp works?

A. The figure shows a simplified block diagram of a log amp. The
core of the device is a cascaded chain of amplifiers. These
amplifiers have linear gain, usually somewhere between 10 dB
and 20 dB. For simplicity of explanation, in this example, we
have chosen a chain of 5 amplifiers, each with a gain of 20 dB,
or 10¥. Now imagine a small sine wave being fed into the first
amplifier in the chain. The first amplifier will amplify the signal
by a factor of 10 before it is applied to the second amplifier.
So as the signal passes through each subsequent stage, it is
amplified by an additional 20 dB.

Now, as the signal progresses down the gain chain, it will at
some stage get so big that it will begin to clip (the term limit
is also used) as shown. In the simplified example, this clipping
level (a desired effect) has been set at 1 V peak. The amplifiers
in the gain chain would be designed to limit at this same
precise level.
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After the signal has gone into limiting in one of the stages
(this happens at the output of the third stage in the figure),
the limited signal continues down the signal chain, clipping at
each stage and maintaining its 1 V peak amplitude as it goes.

The signal at the output of each amplifier is also fed into a full
wave rectifier. The outputs of these rectifiers are summed
together as shown and applied to a low-pass filter, which
removes the ripple of the full-wave rectified signal. Note that
the contributions of the earliest stages are so small as to be
negligible. This yields an output (often referred to as the
“video” output), which will be a steady-state quasi-logarithmic
dc output for a steady-state ac input signal. The actual devices
contain innovations in circuit design that shape the gain and
limiting functions to produce smooth and accurate logarithmic
behavior between the decade breaks, with the limiter output
sum comparable to the characteristic, and the contribution of
the less-than-limited terms to the mantissa.

To understand how this signal transformation yields the log of
the input signal’s envelope, consider what happens if the input
signal is reduced by 20 dB. As it stands in the figure, the
unfiltered output of the summer is about 4 V peak (from three
stages that are limiting and a fourth that is just about to limit).
If the input signal is reduced by a factor of 10, the output of
one stage at the input end of the chain will become negligible,
and there will be one less stage in limiting. Because of the
voltage lost from this stage, the summed output will drop to
approximately 3 V. If the input signal is reduced by a further
20 dB, the summed output will drop to about 2 V.

So the output is changing by 1 V for each factor-of-10
(20-dB) amplitude change at the input. We can describe the
log amp then as having a slope of 50 mV/dB.

Q. O.K. I understand the logarithmic transformation. Now can you
explain what the Intercept is?

A. The slope and intercept are the two specifications that define
the transfer function of the log amp, that is, the relationship
between output voltage and input signal level. The figure shows
the transfer function at 900 MHz, and over temperature, of
the AD8313, a 100-MHz-to-2.5-GHz 65-dB log amp. You can
see that the output voltage changes by about 180 mV for a 10
dB change at the input. From this we can deduce that the
slope of the transfer function is 18 mV/dB.

As the input signal drops down below about –65 dBm, the
response begins to flatten out at the bottom of the device’s
range (at around 0.5 V, in this case). However, if  the linear
part of the transfer function is extrapolated until it crosses the
horizontal axis (0 V theoretical output), it passes through a
point called the intercept (at about –93 dBm in this case). Once
the slope and intercept of a particular device are known (these
will always be given in the data sheet), we can predict the
nominal output voltage of the log amp for any input level within
the linear range of the device (about –65 dBm to 0 dBm in
this case) using the simple equation:

VOUT = Slope × (PIN – Intercept)

For example, if the input signal is –40 dBm the output voltage
will be equal to

18 mV/dB × (–40 dBm – (–93 dBm)) = 0.95 V

It is worth noting that an increase in the intercept’s value
decreases the output voltage.
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The figure also shows plots of deviations from the ideal, i.e.,
log conformance, at –40°C, +25°C, and +85°C. For example,
at +25°C, the log conformance is to within at least ±1 dB for
an input in the range –2 dBm to –67 dBm (over a smaller
range, the log conformance is even better). For this reason, we
call the AD8313 a 65-dB log amp. We could just as easily say
that the AD8313 has a dynamic range of 73 dB for log
conformance within 3 dB.

Q. In doing some measurements, I’ve found that the output level at
which the output voltage flattens out is higher than specified in the
data sheet. This is costing me dynamic range at the low end. What is
causing this?

A. I come across this quite a bit. This is usually caused by the
input picking up and measuring an external noise. Remember
that our log amps can have an input bandwidth of as much as
2.5 GHz! The log amp does not know the difference between
the wanted signal and the noise. This happens quite a lot in
laboratory environments, where multiple signal sources may
be present. Remember, in the case of a wide-range log amp, a
–60-dBm noise signal, coming from your colleague who is
testing his new cellular phone at the next lab bench, can wipe
out the bottom 20-dB of your dynamic range.

A good test is to ground both differential inputs of the log
amp. Because log amps are generally ac-coupled, you should
do this by connecting the inputs to ground through coupling
capacitors.

Solving the problem of noise pickup generally requires some
kind of filtering. This is also achieved indirectly by using a
matching network at the input. A narrow-band matching

network will have a filter characteristic and will also provide
some gain for the wanted signal. Matching networks are
discussed in more detail in data sheets for the AD8307,
AD8309, and AD8313.

Q. What corner frequency is typically chosen for the output stage’s
low-pass filter?

A. There is a design trade-off here. The corner frequency of the
on-chip low-pass filter must be set low enough to adequately
remove the ripple of the full-wave rectified signal at the output
of the summer. This ripple will be at a frequency 2 times the
input signal frequency. However the RC time constant of the
low-pass filter determines the maximum rise time of the output.
Setting the corner frequency too low will result in the log amp
having a sluggish response to a fast-changing input envelope.

The ability of a log amp to respond to fast changing signals is
critical in applications where short RF bursts are being
detected. In addition to the ASK example discussed earlier,
another good example of this is RADAR. The figure on the
left shows the response of the AD8313 to a short 100 MHz
burst. In general, the log-amp’s response time is characterized
by the metric 10% to 90% rise time. The table below compares
the rise times and other important specifications of different
Analog Devices log amps.

Now take a look at the figure on the right. This shows you
what will happen if the frequency of the input signal is lower
than the corner frequency of the output filter. As might be
expected, the full wave rectified signal appears unfiltered at
the output. However this situation can easily be improved by
adding additional low-pass filtering at the output.

Part Number Input Bandwidth 10%–90% Rise Time Dynamic Range Log Conformance Limiter Output

AD606 50 MHz 360 ns 80 dB ±1.5  dB Yes

AD640 120 MHz 6 ns 50 dB ±1 dB Yes

AD641 250 MHz 6 ns 44 dB ±2 dB Yes

AD8306 500 MHz 67 ns 95 dB ±0.4  dB Yes

 AD8307 500 MHz 500 ns 92 dB ±1 dB No

AD8309 500 MHz 67 ns 100 dB ±1 dB Yes

AD8313 2500 MHz 45 ns 65 dB ±1 dB No

Analog Dialogue 33-3 (1999)

GND

HORIZONTAL: 50ns/DIV

VS = +2.7V

PULSED RF
100MHz, –45dBm

200mV/DIV AVERAGE: 50 SAMPLES

OUTPUT

INPUT

TIME

INPUT

TIME

OUTPUT



61

Q. I notice that there is an unusual tail on the output signal at the
right. What is causing that?

A. That is an interesting effect that results from the nature of
the log transformation that is taking place. Looking again at
transfer function plot (i.e. voltage out vs. input level), we can
see that at low input levels, small changes in the input signal
have a significant effect on the output voltage. For example a
change in the input level from 7 mV to 700 µV (or about –30
dBm to –50 dBm) has the same effect as a change in input
level from 70 mV to 7 mV. That is what is expected from a
logarithmic amplifier. However, looking at the input signal
(i.e., the RF burst) with the naked eye, we do not see small
changes in the mV range. What’s happening in the figure is
that the burst does not turn off instantly but drops to some
level and then decays exponentially to zero. And the log of a
decaying exponential signal is a straight line similar to the
tail in the plot.

Q. Is there a way to speed up the rise time of the log amp’s output?

A. This is not possible if the internal low-pass filter is buffered,
which is the case in most devices. However the figure shows
one exception: the unbuffered output stage of the AD8307 is
here represented by a current source of 2 µA/dB, which is
looking at an internal load of 12.5 kΩ. The current source and
the resistance combine to give a nominal slope of 25 mV/dB.
The 5-pF capacitance in parallel with the 12.5-kΩ resistance
combines to yield a low-pass corner frequency of 2.5 MHz.
The associated 10%-90% rise time is about 500 ns.

In the figure, an external 1.37-kΩ shunt resistor has been
added. Now, the overall load resistance is reduced to around
1.25 kΩ. This will decrease the rise time ten-fold. However the
overall logarithmic slope has also decreased ten-fold. As a result,
external gain is required to get back to a slope of 25 mV/dB.

You may also want to take a look at the Application Note
AN-405. This shows how to improve the response time of
the AD606.
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Q. Returning to the architecture of a typical log amp, is the heavily
clipped signal at the end of the gain chain in any way useful?

A. The signal at the end of the linear gain chain has the property
that its amplitude is constant for all signal levels within the
dynamic range of the log amp. This type of signal is very useful
in phase- or frequency demodulation applications. Remember
that in a phase-modulation scheme (e.g. QPSK or broadcast
FM), there is no useful information contained in the signal’s
amplitude; all the information is contained in the phase. Indeed,
amplitude variations in the signal can make the demodulation
process quite a bit more difficult. So the signal at the output

of the linear gain chain is often made available to give a limiter
output. This signal can then be applied to a phase or frequency
demodulator.

The degree to which the phase of the output signal changes as
the input level changes is called phase skew. Remember, the
phase between input and output is generally not important. It
is more important to know that the phase from input to output
stays constant as the input signal is swept over its dynamic
range. The figure shows the phase skew of the AD8309’s limiter
output, measured at 100 MHz. As you can see, the phase varies
by about 6° over the device’s dynamic range and over
temperature.
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Q. I noticed that something strange happens when I drive the log amp
with a square wave.

A. Log amps are generally specified for a sine wave input. The
effect of differing signal waveforms is to shift the effective value
of the log amp’s intercept upwards or downwards. Graphically,
this looks like a vertical shift in the log amp’s transfer function
(see figure), without affecting the logarithmic slope. The figure
shows the transfer function of the AD8307 when alternately
fed by an unmodulated sine wave and by a CDMA channel (9
channels on) of the same rms power. The output voltage will
differ by the equivalent of 3.55 dB (88.7 mV) over the complete
dynamic range of the device.
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The table shows the correction factors that should be applied
to measure the rms signal strength of various signal types with
a logarithmic amplifier which has been characterized using a
sine wave input. So, to measure the rms power of a squarewave,
for example, the mV equivalent of the dB value given in the
table (–3.01 dB, which corresponds to 75.25 mV in the case of
the AD8307) should be subtracted from the output voltage of
the log amp.

Correction Factor
Signal Type (Add to Output Reading)

Sine Wave 0 dB

Square Wave or DC –3.01 dB

Triangular Wave +0.9 dB

GSM Channel
(All Time Slots On) +0.55 dB

CDMA Forward Link
(Nine Channels On) +3.55 dB

Reverse CDMA Channel 0.5 dB

PDC Channel
(All Time Slots On) +0.58 dB

Gaussian Noise +2.51 dB

Q. In your data sheets you sometimes give input levels in dBm and
sometimes in dBV. Can you explain why?

A. Signal levels in communications applications are usually
specified in dBm. The dBm unit is defined as the power in dB
relative to 1 mW i.e.,

Power (dBm) = 10 log10 (Power/1 mW)

Since power in watts is equal to the rms voltage squared,
divided by the load impedance, we can also write this as

Power (dBm) = 10 log10 ((Vrms
2/R)/1 mW)

It follows that 0 dBm occurs at 1 mW, 10 dBm corresponds to
10 mW, +30 dBm corresponds to to 1 W, etc. Because
impedance is a component of this equation, it is always
necessary to specify load impedance when talking about dBm
levels.

50�
RIN
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Log amps, however fundamentally respond to voltage, not to
power. The input to a log amp is usually terminated with an
external 50-Ω resistor to give an overall input impedance of

approximately 50 Ω, as shown in the figure (the log amp has a
relatively high input impedance, typically in the 300 Ω to
1000 Ω range). If the log amp is driven with a 200-Ω signal
and the input is terminated in 200 Ω, the output voltage of the
log amp will be higher compared to the same amount of power
from a 50-Ω input signal. As a result, it is more useful to work
with the voltage at the log amp’s input. An appropriate unit,
therefore, would be dBV, defined as the voltage level in dB
relative to 1 V, i.e.,

Voltage (dBV) = 20 log10 (Vrms/1 V)

However, there is disagreement in the industry as to whether
the 1-V reference is 1 V peak (i.e., amplitude) or 1 V rms.
Most lab instruments (e.g., signal generators, spectrum
analyzers) use 1 V rms as their reference. Based upon this,
dBV readings are converted to dBm by adding 13 dB. So
–13 dBV is equal to 0 dBm.

As a practical matter, the industry will continue to talk about
input levels to log amps in terms of dBm power levels, with
the implicit assumption that it is based on a 50 Ω impedance,
even if it is not completely correct to do so. As a result it is
prudent to provide specifications in both dBm and dBV in data
sheets.

The figure shows how mV, dBV, dBm and mW relate to each
other for a load impedance of 50 Ω. If the load impedance
were 20 Ω, for example, the V (rms), V (p-p) and dBV scales
will be shifted downward relative to the dBm and mW scales.
Also, the V (p-p) scale will shift relative to the V (rms) scale if
the peak to rms ratio (also called crest factor) is something
other than √2 (the peak to rms ratio of a sine wave).

b
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