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Development of the Ideal Op Amp Equations

Ron Mancini

3.1 Ideal Op Amp Assumptions

The name Ideal Op Amp is applied to this and similar analysis because the salient param-
eters of the op amp are assumed to be perfect. There is no such thing as an ideal op amp,
but present day op amps come so close to ideal that Ideal Op Amp analysis approaches
actual analysis. Op amps depart from the ideal in two ways. First, dc parameters such as
input offset voltage are large enough to cause departure from the ideal. The ideal as-
sumes that input offset voltage is zero. Second, ac parameters such as gain are a function
of frequency, so they go from large values at dc to small values at high frequencies.

This assumption simplifies the analysis, thus it clears the path for insight. It is so much
easier to see the forest when the brush and huge trees are cleared away. Although the
ideal op amp analysis makes use of perfect parameters, the analysis is often valid be-
cause some op amps approach perfection. In addition, when working at low frequencies,
several kHz, the ideal op amp analysis produces accurate answers. Voltage feedback op
amps are covered in this chapter, and current feedback op amps are covered in Chap-
ter 8.

Several assumptions have to be made before the ideal op amp analysis can proceed.
First, assume that the current flow into the input leads of the op amp is zero. This assump-
tion is almost true in FET op amps where input currents can be less than a pA, but this
is not always true in bipolar high-speed op amps where tens of µA input currents are
found.

Second, the op amp gain is assumed to be infinite, hence it drives the output voltage to
any value to satisfy the input conditions. This assumes that the op amp output voltage can
achieve any value. In reality, saturation occurs when the output voltage comes close to
a power supply rail, but reality does not negate the assumption, it only bounds it.

Also, implicit in the infinite gain assumption is the need for zero input signal. The gain
drives the output voltage until the voltage between the input leads (the error voltage) is
zero. This leads to the third assumption that the voltage between the input leads is zero.
The implication of zero voltage between the input leads means that if one input is tied to
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a hard voltage source such as ground, then the other input is at the same potential. The
current flow into the input leads is zero, so the input impedance of the op amp is infinite.

Fourth, the output impedance of the ideal op amp is zero. The ideal op amp can drive any
load without an output impedance dropping voltage across it. The output impedance of
most op amps is a fraction of an ohm for low current flows, so this assumption is valid in
most cases. Fifth, the frequency response of the ideal op amp is flat; this means that the
gain does not vary as frequency increases. By constraining the use of the op amp to the
low frequencies, we make the frequency response assumption true.

Table 3–1 lists the basic ideal op amp assumptions and FIgure 3–1shows the ideal op
amp.

Table 3–1. Basic Ideal Op Amp Assumptions

PARAMETER NAME PARAMETERS SYMBOL VALUE

Input current IIN 0

Input offset voltage VOS 0

Input impedance ZIN ∞
Output impedance ZOUT 0

Gain a ∞

VOUT

_

+

a = ∝
Zi = ∝VE = 0

IB = 0

IB = 0

ZO = 0

Figure 3–1. The Ideal Op Amp
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3.2 The Noninverting Op Amp

The noninverting op amp has the input signal connected to its noninverting input (Figure
3–2), thus its input source sees an infinite impedance. There is no input offset voltage be-
cause VOS = VE = 0, hence the negative input must be at the same voltage as the positive
input. The op amp output drives current into RF until the negative input is at the voltage,
VIN. This action causes VIN to appear across RG. 

_
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VIN
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Figure 3–2. The Noninverting Op Amp

The voltage divider rule is used to calculate VIN; VOUT is the input to the voltage divider,
and VIN is the output of the voltage divider. Since no current can flow into either op amp
lead, use of the voltage divider rule is allowed. Equation 3–1 is written with the aid of the
voltage divider rule, and algebraic manipulation yields Equation 3–2 in the form of a gain
parameter.

(3–1)VIN� VOUT

RG

RG� RF

(3–2)
VOUT

VIN
�

RG� RF

RG
� 1�

RF

RG

When RG becomes very large with respect to RF, (RF/RG)⇒ 0 and Equation 3–2 reduces
to Equation 3–3.

(3–3)VOUT� 1

Under these conditions VOUT = 1 and the circuit becomes a unity gain buffer. RG is usually
deleted to achieve the same results, and when RG is deleted, RF can also be deleted (RF
must be shorted when it is deleted). When RF and RG are deleted, the op amp output is
connected to its inverting input with a wire. Some op amps are self-destructive when RF
is left out of the circuit, so RF is used in many buffer designs. When RF is included in a
buffer circuit, its function is to protect the inverting input from an over voltage to limit the
current through the input ESD (electro-static discharge) structure (typically < 1 mA), and
it can have almost any value (20 k is often used). RF can never be left out of the circuit
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in a current feedback amplifier design because RF determines stability in current feed-
back amplifiers.

Notice that the gain is only a function of the feedback and gain resistors; therefore the
feedback has accomplished its function of making the gain independent of the op amp
parameters. The gain is adjusted by varying the ratio of the resistors. The actual resistor
values are determined by the impedance levels that the designer wants to establish.
If RF = 10 k and RG = 10 k the gain is two as shown in Equation 2, and if RF = 100 k and
RG = 100 k the gain is still two. The impedance levels of 10 k or 100 k determine the cur-
rent drain, the effect of stray capacitance, and a few other points. The impedance level
does not set the gain; the ratio of RF/RG does.

3.3 The Inverting Op Amp

The noninverting input of the inverting op amp circuit is grounded. One assumption made
is that the input error voltage is zero, so the feedback keeps inverting the input of the op
amp at a virtual ground (not actual ground but acting like ground). The current flow in the
input leads is assumed to be zero, hence the current flowing through RG equals the cur-
rent flowing through RF. Using Kirchoff’s law, we write Equation 3–4; and the minus sign
is inserted because this is the inverting input. Algebraic manipulation gives Equation 3–5.

_
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Figure 3–3. The Inverting Op Amp

(3–4)I1�
VIN

RG
�� I2��

VOUT

RF

(3–5)
VOUT

VIN
��

RF

RG

Notice that the gain is only a function of the feedback and gain resistors, so the feedback
has accomplished its function of making the gain independent of the op amp parameters.
The actual resistor values are determined by the impedance levels that the designer
wants to establish. If RF = 10 k and RG = 10 k the gain is minus one as shown in Equation
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3–5, and if RF = 100 k and RG = 100 k the gain is still minus one. The impedance levels
of 10 k or 100 k determine the current drain, the effect of stray capacitance, and a few other
points. The impedance level does not set the gain; the ratio of RF/RG does.

One final note; the output signal is the input signal amplified and inverted. The circuit input
impedance is set by RG because the inverting input is held at a virtual ground.

3.4 The Adder

An adder circuit can be made by connecting more inputs to the inverting op amp (Figure
3–4). The opposite end of the resistor connected to the inverting input is held at virtual
ground by the feedback; therefore, adding new inputs does not affect the response of the
existing inputs.

_

+
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Figure 3–4. The Adder Circuit

Superposition is used to calculate the output voltages resulting from each input, and the
output voltages are added algebraically to obtain the total output voltage. Equation 3–6
is the output equation when V1 and V2 are grounded. Equations 3–7 and 3–8 are the other
superposition equations, and the final result is given in Equation 3–9.

(3–6)VOUTN��
RF

RN
VN

(3–7)VOUT1��
RF

R1
V1

(3–8)VOUT2��
RF

R2
V2

(3–9)VOUT���RF

R1
V1�

RF

R2
V2�

RF

RN
VN�
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3.5 The Differential Amplifier

The differential amplifier circuit amplifies the difference between signals applied to the in-
puts (Figure 3–5). Superposition is used to calculate the output voltage resulting from
each input voltage, and then the two output voltages are added to arrive at the final output
voltage.

_
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Figure 3–5. The Differential Amplifier

The op amp input voltage resulting from the input source, V1, is calculated in Equa-
tions 3–10 and 3–11. The voltage divider rule is used to calculate the voltage, V+, and the
noninverting gain equation (Equation 3–2) is used to calculate the noninverting output
voltage, VOUT1.

(3–10)V� � V1
R2

R1� R2

(3–11)VOUT1� V�(G�)� V1
R2

R1� R2
�R3� R4

R3
�

The inverting gain equation (Equation 3–5) is used to calculate the stage gain for VOUT2
in Equation 3–12. These inverting and noninverting gains are added in Equation 3–13.

(3–12)VOUT2� V2�� R4

R3
�

(3–13)VOUT� V1
R2

R1� R2
�R3� R4

R3
�� V2

R4

R3

When R2 = R4 and R1 = R3, Equation 3–13 reduces to Equation 3–14.

(3–14)VOUT�
�V1� V2

�
R4

R3

It is now obvious that the differential signal, (V1–V2), is multiplied by the stage gain, so
the name differential amplifier suits the circuit. Because it only amplifies the differential
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portion of the input signal, it rejects the common-mode portion of the input signal. A com-
mon-mode signal is illustrated in Figure 3–6. Because the differential amplifier strips off
or rejects the common-mode signal, this circuit configuration is often employed to strip
dc or injected common-mode noise off a signal.

_

+

V1

VOUTRF

RG

RGV2
RF

VCM

Figure 3–6. Differential Amplifier With Common-Mode Input Signal

The disadvantage of this circuit is that the two input impedances cannot be matched when
it functions as a differential amplifier, thus there are two and three op amp versions of this
circuit specially designed for high performance applications requiring matched input im-
pedances.

3.6 Complex Feedback Networks

When complex networks are put into the feedback loop, the circuits get harder to analyze
because the simple gain equations cannot be used. The usual technique is to write and
solve node or loop equations. There is only one input voltage, so superposition is not of
any use, but Thevenin’s theorem can be used as is shown in the example problem given
below.

Sometimes it is desirable to have a low resistance path to ground in the feedback loop.
Standard inverting op amps can not do this when the driving circuit sets the input resistor
value, and the gain specification sets the feedback resistor value. Inserting a T network
in the feedback loop (FIgure 3–7) yields a degree of freedom that enables both specifica-
tions to be met with a low dc resistance path in the feedback loop.

_
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Figure 3–7. T Network in Feedback Loop
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Break the circuit at point X–Y, stand on the terminals looking into R4, and calculate the
Thevenin equivalent voltage as shown in Equation 3–15. The Thevenin equivalent imped-
ance is calculated in Equation 3–16.

(3–15)VTH� VOUT

R4

R3� R4

(3–16)RTH� R3 � R4

Replace the output circuit with the Thevenin equivalent circuit as shown in Figure 5–8,
and calculate the gain with the aid of the inverting gain equation as shown in Equation
3–17.

_
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VIN

VTHa

R2R1 RTH

Figure 3–8. Thevenin’s Theorem Applied to T Network

Substituting the Thevenin equivalents into Equation 3–17 yields Equation 3–18.

(3–17)�
VTH

VIN
�

R2� RTH

R1

(3–18)�
VOUT

VIN
�

R2� RTH

R1
�R3� R4

R4
� � R2�

�R3 � R4
�

R1
�R3� R4

R4
�

Algebraic manipulation yields Equation 3–19.

(3–19)
�

VOUT

VIN
�

R2� R3�
R2R3

R4

R1

Specifications for the circuit you are required to build are an inverting amplifier with an
input resistance of 10 k (RG = 10 k), a gain of 100, and a feedback resistance of 20 K or
less. The inverting op amp circuit can not meet these specifications because RF must
equal 1000 k. Inserting a T network with R2 = R4 = 10 k and R3 = 485 k approximately
meets the specifications.
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3.7 Video Amplifiers

Video signals contain high frequencies, and they use coaxial cable to transmit and receive
signals. The cable connecting these circuits has a characteristic impedance of 75 Ω. To
prevent reflections, which cause distortion and ghosting, the input and output circuit im-
pedances must match the 75 Ω cable.

Matching the input impedance is simple for a noninverting amplifier because its input im-
pedance is very high; just make RIN = 75 Ω. RF and RG can be selected as high values,
in the hundreds  of Ohms range, so that they have minimal affect on the impedance of the
input or output circuit. A matching resistor, RM, is placed in series with the op amp output
to raise its output impedance to 75 Ω; a terminating resistor, RT, is placed at the input of
the next stage to match the cable (Figure 3–9).

_
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Figure 3–9. Video Amplifier

The matching and terminating resistors are equal in value, and they form a voltage divider
of 1/2 because RT is not loaded. Very often RF is selected equal to RG so that the op amp
gain equals two. Then the system gain, which is the op amp gain multiplied by the divider
gain, is equal to one (2 × 1/2 = 1).

3.8 Capacitors

Capacitors are a key component in a circuit designer’s tool kit, thus a short discussion on
evaluating their affect on circuit performance is in order. Capacitors have an impedance
of XC = 1/2πfC. Note that when the frequency is zero the capacitive impedance (also
known as reactance) is infinite, and that when the frequency is infinite the capacitive im-
pedance is zero. These end-points are derived from the final value theorem, and they are
used to get a rough idea of the effect of a capacitor. When a capacitor is used with a resis-
tor, they form what is called a break-point. Without going into complicated math, just ac-
cept that the break frequency occurs at f = 1/(2π RC) and the gain is –3 dB at the break
frequency. 

The low pass filter circuit shown in Figure 3–10 has a capacitor in parallel with the feed-
back resistor. The gain for the low pass filter is given in Equation 3–20.
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Figure 3–10. Low-Pass Filter

(3–20)
VOUT

VIN
��

XC � RF

RG

At very low frequencies XC ⇒ ∞ , so RF dominates the parallel combination in Equation
20, and the capacitor has no effect. The gain at low frequencies is –RF/RG. At very high
frequencies XC ⇒  0, so the feedback resistor is shorted out, thus reducing the circuit gain
to zero. At the frequency where XC = RF the gain is reduced by √2 because complex im-
pedances in parallel equal half the vector sum of both impedances.

Connecting the capacitor in parallel with RG where it has the opposite effect makes a high
pass filter (Figure 3–11). Equation 3–21 gives the equation for the high pass filter.

_

+VIN
a VOUT
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Figure 3–11.High-Pass Filter

(3–21)
VOUT

VIN
� 1�

RF

XC � RG

At very low frequencies XC ⇒ ∞ , so RG dominates the parallel combination in Equation
3–21, and the capacitor has no effect. The gain at low frequencies is 1+RF/RG. At very
high frequencies XC ⇒  0, so the gain setting resistor is shorted out thus increasing the
circuit gain to maximum.

This simple technique is used to predict the form of a circuit transfer function rapidly. Better
analysis techniques are presented in later chapters for those applications requiring more
precision.
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3.9 Summary

When the proper assumptions are made, the analysis of op amp circuits is straightfor-
ward. These assumptions, which include zero input current, zero input offset voltage, and
infinite gain, are realistic assumptions because the new op amps make them true in most
applications.

When the signal is comprised of low frequencies, the gain assumption is valid because
op amps have very high gain at low frequencies. When CMOS op amps are used, the in-
put current is in the femto amp range; close enough to zero for most applications. Laser
trimmed input circuits reduce the input offset voltage to a few micro volts; close enough
to zero for most applications. The ideal op amp is becoming real; especially for unde-
manding applications.




