
Get More Power Out of Dual or Quad Op-Amps

National Semiconductor Linear Brief 44 Bob Pease

Although simple brute-force paralleling of op-amps is a bad scheme for driving heavy loads, here is a good scheme for dual op-amps. It is fairly efficient, and will not overheat if the load is disconnected. It is *not* useful for driving active loads or nonlinear loads. however.

In Figure 1, an LF353N mini-DIP can drive a 600Ω load to $\pm 9V$ typical ($\pm 6V$ min guaranteed) and will have only a $47^{\circ}C$ temperature rise above free air. If the load R is removed, the chip temperature will rise to $+50^{\circ}C$ above free air. Note that A2's task is to drive half of the load. A1 could

A1, A2 = 1/2 LM747 or 1/2 LF353 or any op-amp.

FIGURE 1. A1 and A2 Share the Load

be applied as a unity-gain follower or inverter, or as a highgain or low-gain amplifier, integrator, etc.

While Figure 1 is suitable for sharing a load between 2 amplifiers, it is not suitable for 4 or more amplifiers, because the circuit would tend to go out of control and overheat if the load is disconnected.

Instead, Figure 2 is generally recommended, as it is capable of driving large output currents into resistive, reactive, nonlinear, passive, or active loads. It is easily expandable to use as many as 2 or 4 or 8 or 20 or more op-amps, for driving heavier loads.

It operates, of course, on the principle that every op-amp has to put out the same current as A1, whether that current is plus, minus, or zero. Thus if the load is removed, all amplifiers will be unloaded together. A quad op-amp can drive 600Ω to ±11 or 12 volts. Two quads can put out ±40 mA, but they get only a little warm. A series R-C damper of 15 Ω in series with 0.047 μF is useful to prevent oscillations (although LM324's do not seem to need any R-C damper).

Of course, there is no requirement for the main amplifier to run only as a unity-gain amplifier. In the example shown in Figure 3, A1 amplifies a signal with a gain of \pm 10. A2 helps it drive the load. Then A3 operates as a unity-gain inverter to provide V2 = \pm V1, and A4 helps it drive the load. This circuit can drive a floating 2000 \pm load to \pm 20V, accurately, using a slow LM324 or a quick LF347.

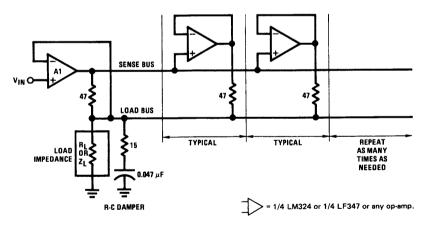


FIGURE 2. Improved Load-Sharing Circuit

TL/H/8493-2

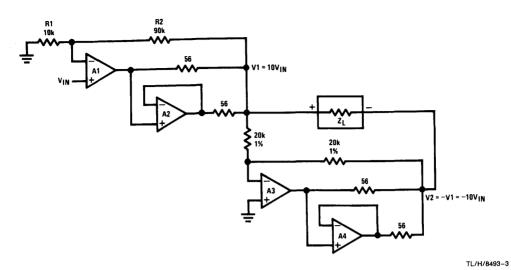


FIGURE 3. Typical Application of Load-Sharing