High-impedance buffer amplifier's input includes ESD protection

Eugene Palatnik, Waukesha, WI

Certain measurement applications, such as for pH (acidity) and bio-potentials, require a highimpedance buffer amplifier. Although several semiconductor manufacturers offer amplifier ICs featuring low bias and offset-input currents, attaching a sensor cable to an amplifier circuit can inflict damage from ESD (electrostatic discharge). **Figure 1** shows one

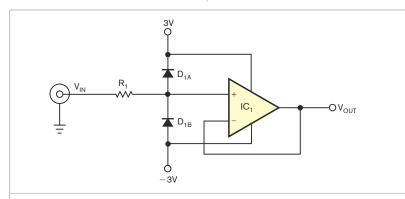


Figure 1 In a conventional ESD-suppression circuit, diodes clamp an amplifier's input voltage to its power-supply rails but introduce unwanted leakage currents.

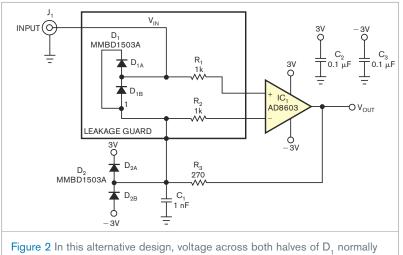


Figure 2 In this alternative design, voltage across both halves of D_1 normally approaches 0V and introduces no leakage currents. During an ESD event, both D_1 and D_2 conduct to protect IC₁'s inputs.

DIs Inside

192 Composite-VGA encoder/ decoder eases display upgrade

194 Solenoid-protection circuit limits duty cycle

196 SPST pushbutton switch combines power-control, user-input functions

198 Electronic circuit replaces mechanical push-push switch

What are your design problems and solutions? Publish them here and receive \$150! Send your Design Ideas to edndesignideas@ reedbusiness.com.

unsatisfactory approach to ESD protection. Resistor R_1 limits an ESD event's discharge current, and diodes D_{1A} and D_{1B} clamp amplifier IC₁'s input to its power-supply rails. Unfortunately, when shunting a pH sensor's 400-M Ω input impedance, even low-leakage diodes, such as Fairchild Semiconductor's (www.fairchildsemi.com) MMBD-1503A, introduce significant offset voltages.

The circuit in Figure 2 offers an alternative approach. An Analog Devices (www.analog.com) low-inputbias, low-offset-current AD8603 amplifier, IC₁, serves as a unity-gain input buffer. For any normal input, the circuit's output voltage, V_{OUT} , equals its input voltage, $V_{\rm IN}$. Thus, the voltage across ESD-protection diode D_{IA} or D_{IB} approaches OV, and neither diode's leakage current affects the sensor's output signal. Depending on the polarity of an ESD event you apply to the circuit's input connector, its high-voltage spike discharges through diode D_{1A} or D_{1B} into the positive or the negative

designideas

power-supply rail. Capacitor C_1 acts as an intermediate "charge reservoir" that slows the ESD spike's rate of rise and protects IC_1 's output stage from latching until diode D_{2A} or D_{2B} begins diversion of the ESD transient into the positive or the negative supply rail. In effect, C_1 compensates for D_1 's parasitic capacitance. Resistor R_3 allows IC_1 to drive the capacitive load that C_1 presents without going into oscillation.

During an ESD event, both D_1 and D_2 can conduct, but the voltage at V_{1N} exceeds the power-supply-rail voltage by only two forward-biased diode voltage drops. Resistors R_1 and R_2 limit the amplifier input's currents below the manufacturer's recommended 5-mA maximum rating.

When packaging the circuit, pay special attention to the pc board's layout. Imperfections in the board's dielectric

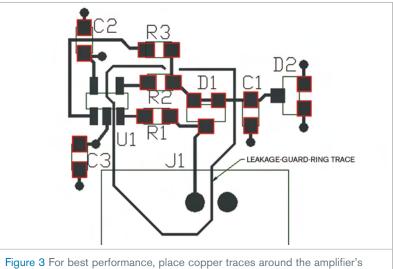


Figure 3 For best performance, place copper traces around the amplifier's high-impedance points to intercept leakage currents.

properties can provide parasitic-leakage-current paths. Adding copper traces on both sides of the board to form guard rings around the circuit's highimpedance nodes diverts leakage currents (Figure 3).EDN