Circuit simultaneously delivers square and square root of two input voltages

Marián Štofka, Slovak University of Technology, Bratislava, Slovakia

This Design Idea requires inputs from the circuit in a previous Design Idea (**Reference 1**). IC₁ and IC₃ are ADG5213 quad switches with individual logic-level control inputs (**Figure** 1 and **Reference 2**). With a high input, switches S₂ and S₃ are open, and switches S₁ and S₄ are closed. The switches toggle to opposite states with their control inputs low. The circuit is in the idle pretriggered condition. During the initial idle condition before a clock risingedge trigger, Q is high and, through IC_8 , holds switches S_2 and S_3 of IC_1 in the open position.

Q is low, and, through IC₇'s Reset high closes IC₁'s S₁ and S₄, discharging C_{T2} and C_{T4} and zeroing the input voltage to unity-gain amplifiers IC_{2D} and IC_{2C}. \overline{Q} low also sets Track 2 low through IC₆ and holds IC₃'s S₁ and S₄ in the open position. The circuit retains any sampled voltages from a previous operation in sample-and-hold capacitors $C_{\rm S1}$ and $C_{\rm S2}$; these voltages appear at $V_{\rm OUTX}$ and $V_{\rm OUTY}$ through unity-gain amplifiers $IC_{\rm 2A}$ and $IC_{\rm 2B}$.

Signals V_{OUTL} and V_{OUTQ} from the linear and quadratic pulse generator are at 0V during idle, holding comparator outputs IC₄ and IC₅ low. A rising trigger edge at the clock signal begins the ramp generation of V_{OUTI} and V_{OUTO} . The Q and IC₈ outputs fall low, closing IC_1 's S_2 and S_3 and ensuring that Track 2 remains low. Q rises and forces Reset low through IC₇, opening S_1 and S_4 of $\mathrm{IC}_{\scriptscriptstyle 1}$ and allowing $\mathrm{C}_{\scriptscriptstyle T2}$ to follow the rising V_{OUTO} and C_{T4} to follow the rising V_{OUTL}.

When linear ramp V_{OUTL} rises to

[www.edn.com]

designideas

analog input V_{χ} , IC_4 's output rises and, through IC_8 , Track 1L opens S_2 of IC_1 and allows C_{T2} to hold the present level of $V_{\rm OUTQ}$. In a similar manner, when quadratic ramp $V_{\rm OUTQ}$ rises to analog input V_{γ} , IC_5 's output rises and, through IC_8 , Track 1Q opens IC_1 's S_3 and allows C_{T4} to hold $V_{\rm OUTL}$'s present level. The pulse generator terminates when the ramps reach 5V. The ramps then fall back to 0V, Q returns high, and \overline{Q} returns low.

The rise of Q immediately triggers IC_6 to generate a high pulse of approximately 20 µsec on Track 2 based on R_{D1} and C_{D1} . This action closes IC_3 's S_1 and S_4 , allow-

ing the sampled voltages on $\rm C_{T2}$ and $\rm C_{T4}$ to transfer to $\rm C_{S1}$ and $\rm C_{S2}$ through unitygain amplifiers $\rm IC_{2D}$ and $\rm IC_{2C}$. Unity-gain amplifiers $\rm IC_{2A}$ and $\rm IC_{2B}$ present the $\rm C_{S1}$ and $\rm C_{S2}$ voltages at $\rm V_{OUTX}$ and $\rm V_{OUTY}$. When Track 2 returns low, IC_3's S_1 and S_4 open, and the sampled voltages on $\rm C_{S1}$ and $\rm C_{S2}$ are retained.

The fall of \overline{Q} triggers IC₇ to produce a 50-µsec delayed rise on Reset, which R_{D2} and C_{D2} time to occur after Track 2 has returned low and the sampled voltages are safely captured on C_{S1} and C_{S2} . Reset's high state closes IC₁'s S₁ and S₄, discharging C_{T2} and C_{T4} in preparation for the next trigger, V_{OUTX} is the squared voltage of input V_X , and V_{OUTY} is the square root of the voltage of input V_Y . You can view the equations at www.edn. com/120301dia.

REFERENCES

Štofka, Marián, "Positive edges trigger parabolic timebase generator," *EDN*, July 28, 2011, pg 51, http://bit.ly/ yYvu3F.

*ADG5212/ADG5213 High Voltage Latch-up Proof, Quad SPST Switches," Analog Devices, 2011, http://bit.ly/ w6XTO3.

voltages of 0 to 5V.