
High-frequency signals and low-pass filters

Circuit Surgery
Regular Clinic	 by Ian Bell

A LITTLE while ago user 741 posted 
a question about low-pass filters on 

the EPE Chat Zone. As regular readers 
will know, this forum has since been 
retired and EPE ‘chat’ is now hosted 
on EEWeb (www.eeweb.com/forum). 
The old forum is still available in read-
only-mode, but new discussions can 
be started on EEWeb using the tag ‘EPE 
Magazine’ to mark threads as being 
EPE-related.

Returning to 741’s question, he asks: 
‘Op amps have GBW (gain-bandwidth 
product), say 10MHz. If this was an 
amplifier circuit (not a filter), then 
(ignoring phase gremlins), the relation 
G = 1/β gets less accurate as A (open-
loop gain) falls with frequency. At 
100kHz, A is 100, so the relation holds 
well, but at 1MHz, we need to use G = 
A/(1+Aβ)... I think.

How does the performance of say 
an MFB (multiple-feedback) low-
pass filter suffer with rising input 
frequency? Suppose we have a 1kHz 
low-pass filter. You feed in 10kHz, 
and it maybe works ‘well’. You apply 
1MHz, and it starts to act up.’
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means one tenth (deci, hence d) of a 
bel (symbol B). One bel is log10(P2/P1), 
but as we use 10 × log10(P2/P1) we are 
counting in tenths of a bel. The bel is 
named after Alexander Graham Bell.

The definition of the decibel is 
based on power, but we are often 
interested in voltage levels and voltage 
gains. Power is related to the square 
of voltage, specifically P = V2/R for a 
voltage (V) across a resistor (R). If we 
square something inside a logarithm 
it is equivalent to multiplying the 
log by two (without the square); that 
is, log(y2) = 2 × log(y). So for voltage 
gains, we assume a reference resistor 
(R) that cancels out when we find Pout/
Pin = (Vout

2/R)/(Vin
2/R) = Vout

2/Vin
2, we 

get a voltage gain in decibels of 2 × 10 
× log10(Vout/Vin) = 20 × log10(Vout/Vin).

On the decibel scale, a gain of 1 is 0 
dB, gains greater than 1 (amplification) 
are positive and gains less than one 
(attenuation) are negative. The graph 
in Fig.2 shows a filter with unity-gain 
at low frequencies and increasing 
attenuation at high frequencies. The 
scale points of –10, –20, –20, –40… 
correspond to attenuations of 1/3.2, 
1/10, 1/32 and 1/100 respectively. 
To covert from a voltage gain (G) 
expressed in dB to a simple numerical 
gain find 10(G/20). For a power gain use 
10(G/10).

Being able to interpret decibel 
values, and plots using decibels and 
log frequency is very useful when 
working with filters. The log-log scale 
allows details of responses to be seen 
over a very wide range of frequency 
and gain, which would be lost with 
a linear plot. However, if they are 
not read correctly the importance of 
small features may seem exaggerated 
– you need to be able to interpret the 
dB values in terms of their actual 
relevance to the circuit you are 
working with. Having a feel for what 
the numbers mean (eg, a –40dB output 
is 100 times smaller than the input 
voltage) helps.

Brick wall
An ideal low-pass filter would pass 
all signals below the cut-off and 
completely reject all signals above the 
cut-off. The frequency response graph 
would look like Fig.3. Unfortunately, 
this perfectly sharp cut-off, which 
is referred to as a ‘brick wall’ filter, 
cannot be physically implemented. 

our intended purpose. Frequency 
response requirements may be used 
as part of the specification for a circuit 
design.

The question also prompts some 
more specific points – how we 
interpret the well-known negative 
feedback gain equation G = A/(1+Aβ) 
in the context of op amp filters and 
why the performance of specific low-
pass filter circuits may degrade at 
relatively high frequencies. We will 
look at this after introducing some 
basics of frequency response plots and 
filter characteristics.

Filters are circuits that pass signals 
(from input to output) for a certain 
range of frequencies (called the pass 
band) while rejecting signals at other 
frequencies (in the stop band). For 
signals within the pass band the 
filter may have high gain, low gain 
or even attenuation – the key thing is 
not the specific gain, but the fact that 
the gain will diminish significantly 
with respect to the pass band for 
frequencies outside this pass band. 
As its name implies, a low-pass filter 
should pass signals only if they are 
below a given frequency, called the 
‘cut-off frequency’.

Decibels
On frequency responses graphs 
gain is often plotted using a scale in 
decibels (dB) versus the logarithm of 
frequency. The definition of a decibel 
is also logarithmic and is based on the 
power ratio of two signals P1 and P2 – 
specifically, the power ratio in decibels 
is given by: 10 × log10(P2/P1) dB, where 
P2/P1 is the power gain (eg, Pout/Pin), or 
P1 is an agreed reference level and P2 is 
a measured value. The term ‘decibel’ 
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Back to basics
Starting with circuit fundamentals, 
a filter or amplifier is an electronic 
system (see Fig.1) which reproduces 
the signal on its input (vin) on its 
output (vout). Typically, the output 
has different amplitude and power 
delivery capabilities. The ratio of 
output to input signal level vout/
vin is the voltage gain (G) and very 
often (as in 741’s question) we are 
interested in how the gain of a circuit 
varies with frequency, known as the 
‘frequency response’ of the circuit. 
Often, a frequency response is shown 
by plotting a graph of gain against 
frequency (see Fig.2, which we will 
discuss in more detail shortly). Such 
a plot can obtained by measurement 
in a lab, by simulation or by plotting 
a mathematical function derived from 
analysis of the circuit. The frequency 
response graph can be used to help 
decide if a circuit is appropriate for 
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Fig.1. Simple electronic system; the gain 
is vout/vin.

Fig.2. Example frequency response graph 
of a 1.0kHz low-pass filter.
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input. This leads to the system 
diagram in Fig.5, which can be used 
to derive the equation 741 quotes. 
This was done in the November 2016 
article, so we will not repeat it here.

An important point about the system 
diagram in Fig.5, and the equation 
obtained from it, is that it applies 
specifically to the non-inverting 
amplifier. It may, but does not 
necessarily, apply to other amplifier 
circuits. For example, as was also 
pointed out in the November 2016 
article, the system diagram for the 
inverting amplifier is not exactly the 
same as the one in Fig.5. This means 
that the equations G = A/(1+Aβ) and 
G = 1/β do not apply to the inverting 
amplifier; for example the simplified 
equation for the inverting amplifier is 
G = (1–1/β). This is not always made 
clear when op amp feedback theory is 
discussed.

The non-inverting amplifier is 
sufficient for explaining the general 
principles of feedback theory, so the 
variants are not presented, and it is 
easy to assume the non-inverting 
equations apply to all circuits. This is 
directly relevant to 741’s question – in 
a later post he commented ‘It’s hard to 
work out what β is for many filters’. 
Filter circuits may have more complex 
feedback structures than basic 
amplifiers, so the assumption that 
the non-inverting amplifier feedback 
equation can be straightforwardly 
applied may be wrong.

To obtain equations for the input-
output relationships of single op 
amp filters, like the MFB filter 
741 mentions, we typically apply 
basic circuit theory (eg, Ohm’s and 
Kirchhoff’s laws) together with 
idealised op amp characteristics (zero 
input current, and zero voltage across 
the inputs due to the very high gain in 
combination with negative feedback). 
On the other hand, the basic theory 
that gives us G = A/(1+Aβ) and G = 1/β 
does help explain, in general terms, 
what happens to op amp circuits as 
frequency increases and this is related 
to high-frequency performance issues 
with filters such as the MFB.

Compensation
Fig.6 shows the frequency response of 
a typical op amp’s open-loop gain and 
the closed-loop gain of an amplifier 
(eg, inverting and non-inverting 
amplifiers) built using the op amp. In 

Instead, real filters have a more gradual 
decrease in gain in the transition from 
pass band to stop band; for example, 
the frequency response in Fig.2. The 
question then arises as to where the 
cut-off is taken to be along the smooth 
curve. The usual answer is that the 
cut-off is defined to be the frequency at 
which the output power from the filter 
falls to half that in the pass band, this 
is 10 × log10(0.5) = –3 dB. For example, 
for the response shown in Fig.2, the 
cut-off frequency is 1kHz (the same as 
the brick wall filter in Fig.3).

All filters deviate from the ideal 
brick wall filter, so the question a 
circuit designer faces is what is good 
enough, or most suitable for the 
application? The purpose of a filter is 
to remove unwanted frequency content 
from a signal because it will cause 
problems in the following circuitry or 
output signal. The attenuation of the 
unwanted signal has to be sufficient 
to prevent its presence from being 
problematical. The filter specification 
becomes more demanding if the 
wanted and unwanted signals are 
close in frequency, because this 
requires a filter to be closer to the 
ideal, but impossible-to-achieve brick 
wall response. In many situations 
where a filter is required the unwanted 
frequencies will be close, or moderately 
close, to the wanted signal, and there 
may be very little unwanted signal 
strength at much higher frequencies. 
In such cases the performance of 
the filter at these higher frequencies 
may not be particularly important. 
However, this is not always the case 
and some applications demand filters 
with good performance over a very 
wide range of stop band frequencies. 

It is therefore important to understand 
the limitations of some types of low-
pass filter circuit at high frequencies. 
This is exactly the issue raised by 741.

Feedback equation
741’s question makes reference to the 
feedback gain equation G = A/(1+Aβ), 
in which G is the gain of the whole 
circuit with feedback, A is the gain 
of the amplifier to which feedback 
is applied and β is the proportion of 
the output signal applied as negative 
feedback. A is called the ‘open-loop 
gain’ of the amplifier, this does not 
change when the external feedback is 
applied – it is an internal property of 
the amplifier. However, the gain of the 
whole circuit is strongly dependent 
on the feedback, as well as being 
influenced by A. We have discussed 
feedback theory in Circuit Surgery 
(November 2016) and showed how 
this equation simplifies to G = 1/β 
if A is very large (eg, hundreds of 
thousands), which it typically is for 
op amps at low frequencies. This is 
an important result because it means 
the gain of the circuit only depends on 
the external feedback components (eg, 
the resistors in an op amp amplifier 
circuit) and not on the value of the 
open-loop gain of the amplifier itself.

The G = A/(1+Aβ) equation is 
obtained by drawing a system diagram 
to represent the relationships between 
the signals in the circuit and finding the 
gain (output/input) of the system. This 
diagram is an abstract representation 
of the behaviour of the circuit and is 
used because it provides a useful basis 
for mathematical analysis. System 
diagrams like this are frequently 
used in control systems design – the 
technique is applicable well beyond 
analysis of circuits such as amplifiers.

System diagrams
Some standard op amp amplifier 
circuits are shown in Fig.4. The most 
straightforward case for developing a 
system diagram is the non-inverting 
amplifier. Here it is clear to see that 
the output is fed back to the inverting 
input via a potential divider. The 
fraction of the output voltage that 
appears at the junction of the two 
resistors is the feedback fraction β. 
The circuit input is applied directly 
to the non-inverting input of the op 
amp. Thus the input is added and the 
feedback subtracted at the amplifier 
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Fig.4. Op amp amplifiers

Fig.3. Frequency response graph of a 
1.0kHz ‘Brick Wall’ low-pass filter. This 
perfect filter cannot be built as a real 
circuit.

Fig.5. System diagram for the non-inverting op amp amplifier
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both cases this is a low-pass response. 
The direct-coupled, DC-amplifying, 
nature of the op amp circuit means 
that the gain does not also roll off at 
low frequencies, as it would for a 
capacitively coupled amplifier. The 
open-loop op amp has full gain at DC, 
but this starts dropping at a very low 
frequency compared to those at which 
many op amp applications operate. 
The cut-off frequency is typically 1 
to 10Hz, with the falloff in gain above 
that frequency being 20dB per decade 
(tenfold increase in frequency). This 
low cut-off frequency for the open-
loop gain is deliberately designed into 
the op amp to prevent instability when 
feedback is applied and is known as 
‘compensation’.

The closed-loop gain (G) of an op 
amp amplifier is set by the feedback 
resistors, as mentioned above, and is 
usually much lower than the open-
loop gain. As frequency increases, the 
closed-loop gain remains constant at 
1/β until the approximation A = 1/β no 
longer holds due to the open-loop gain 
(A) at that frequency (and above) being 
too low. At these higher frequencies 
the closed-loop gain decreases along 
with the open-loop gain (see Fig.6). 
The cut-off frequency for the closed-
loop response is typically at a much 
higher frequency than the cut-off 
frequency point of the open-loop gain.

As the op amp’s gain extends from 
DC, the frequency at which the closed-
loop gain starts dropping off is equal 
to the circuit’s bandwidth (range of 
frequency it can amplify) at that closed-
loop gain. The lower the closed-loop 
gain, the higher the frequency at which 
the closed-loop frequency response 

intersects the open-loop response 
and starts decreasing. The straight-
line nature of the open-loop response 
in Fig.6 means that if you multiply 
the closed-loop gain and closed-loop 
bandwidth together for any closed-
loop gain you get the same value. This 
is called the ‘gain-bandwidth product’ 
(GBW) and is an indication of how 
‘high frequency’ an op amp is. Fixed 
GBW is common for op amps, but not 
universal, as it depends on the form of 
compensation used.

From the preceding discussion 
we see that application of negative 
feedback to a very high gain amplifier 
(op amp) makes the circuit gain 
insensitive to the gain of the amplifier 
itself. This effect breaks down at 
frequencies where the amplifier’s 
gain is not significantly larger than 
the circuit gain. Negative feedback 
has other significant effects on circuit 
performance, for example it reduces 
the effective output impedance. Like 
amplifier-independent gain-setting, 
the feedback magic is lost for these 
effects too at high frequencies; for 
example, effective output impedance 
may increase at high frequencies. 
The equations G = A/(1+Aβ) and G = 
1/β quoted by 741 may only relate to 
gain and may only apply to specific 
circuits but, together with the op 
amp frequency response curve, they 
demonstrate the general principle of 
feedback providing improved circuit 
performance, which is lost at high 
frequencies due to diminished open-
loop gain. The problem with the MFB’s 
(and similar low-pass filters’) gain 
increasing at high frequencies is due 
to an increase in output impedance.

Analysis
Fig.7 shows a Sallen-Key filter, which 
is a single op amp filter circuit, like 
the MFB filter mentioned by 741. At 
very high frequencies the capacitors 
in the circuit behave like short circuits 
leading to the simplified version of 
the circuit shown in Fig.8. The op 
amp has been replaced by a unity-gain 
buffer (this is the role it performs in 
this circuit). Given that the buffer’s 
input is shorted to ground, the buffer’s 
internal voltage source is producing 
0V. This is the same as connecting the 
internal side of the output impedance 
to ground, allowing us to further 

simplify the equivalent circuit to that 
shown in Fig.9.

Looking at Fig.8 we see that R2 and 
RO are in parallel, but typically R2 is at 
least 100-times larger than RO, so we 
can ignore R2. Thus vout is related to vin 
by the potential divider formed by R1 
and RO, and so:.
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The output of the real filter circuit is a combination of the unwanted signal given by the 
above equation and the ideal filter response. At low frequencies the ideal response dominates, 
but as frequency increases, the op amp’s gain decreases, so the effective value of RO 
increases, increasing the contribution of the unwanted signal to the total output. At high 
frequencies this unwanted signal dominates the circuit’s output. The MFB suffers in a similar 
way, although the equivalent circuit model is different. 
 
Simulation 
The behaviour of Sallen-Key and MFB filters at high frequencies can be observed using 
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implemented using Linear Technology’s LT1002A model of their op amp, which is supplied 
with LTspice. The Sallen-Key filter is also implemented with an ideal op amp model, which 
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The results of the simulation are shown in Fig.11 and demonstrate the issue mentioned by 
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attenuates signals above 1MHz by 40dB (one hundredth), whether or not this is acceptable 
would depend on the application. The MFB circuit is much better: –100dB at 1MHz is an 
attenuation of one hundred-thousandth. 
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However, again, R1 is typically about 
100-times larger than RO, so in this 
case we can ignore RO in the sum of 
the resistances, giving an approximate 
value of vout as:

The output of the real filter circuit is 
a combination of the unwanted signal 
given by the above equation and the 
ideal filter response. At low frequencies 
the ideal response dominates, but as 
frequency increases, the op amp’s 
gain decreases, so the effective 
value of RO increases, increasing the 
contribution of the unwanted signal to 
the total output. At high frequencies 
this unwanted signal dominates the 
circuit’s output. The MFB suffers in a 
similar way, although the equivalent 
circuit model is different.

Simulation
The behaviour of Sallen-Key and 
MFB filters at high frequencies can 
be observed using simulations. 
Fig.10 shows a schematic used for a 
simulation of MFB and Sallen-Key 
filters implemented using Linear 
Technology’s model of their LT1002A  
op amp, which is supplied with 
LTspice. The Sallen-Key filter is also 
implemented with an ideal op amp 

Fig.6. Typical form of the open- and 
closed-loop frequency responses of an 
op amp amplifier.

Fig.7. Sallen-Key filter.
Fig.8. Simplified equivalent circuit for the filter in Fig.7 at very 
high frequencies.

Fig.9. Further simplification of the 
equivalent circuit in Fig.8.
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model, which will have zero output 
impedance at all frequencies and 
hence not suffer from the problem 
described above.

The results of the simulation are 
shown in Fig.11 and demonstrate the 
issue mentioned by 741. It can be seen 
that both the Sallen-Key and MFB filters 
suffer from the problem of increased 
gain at high frequencies in comparison 
with the ideal circuit, but the MFB 
circuit exhibits better performance. 
The exact performance of the circuits 
will depend on the op amp used and 
relevant external component values. 
The simulation only shows the effect 
of using the realistic op amp model. 
The influence of other components’ 
non-ideal behaviour and physical 
layout are not included, but may need 
to be considered in real circuits at 
high frequencies. In this example, the 
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Sallen-Key circuit attenuates signals 
above 1MHz by 40dB (one hundredth), 
whether or not this is acceptable 
would depend on the application. The 
MFB circuit is much better: –100dB 
at 1MHz is an attenuation of one 
hundred-thousandth.

Further reading
Readers interested in more details on 
this topic are directed towards Jim 
Karki’s application reports from Texas 
Instruments.

Karki, J., Active Low-Pass Filter Design, 
Rev. B, 2002, Texas Instruments 
Application Report SLOA049B. 
www.ti.com/litv/pdf/sloa049b

Karki, J., Analysis of the Sallen-Key 
Architecture, Rev. B, 2002, Texas 
Instruments Application Report 
SLOA024B. 
www.ti.com/litv/pdf/sloa024b

Fig.11. LTspice simulation results from the circuit in Fig.10.

Fig.10. Schematic for LTspice simulation 
comparing ideal, Sallen-Key and MFB 
low-pass filters.
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