

Fig. 22-1. Voltage controlled low-pass filter (NS).

Fig. 22-4. High-pass active filter (NS).

318

Fig. 22-5. Bi-quad active filter (second degree state-variable network) (NS).

Fig. 22-6. Multiple feedback bandpass 1-kHz filter (M).

	10 0
<u>_</u>	

DC BIASING EQUATIONS FOR Voi(pc)#Voipc/#V+/2

pe I	$\frac{2 V_{iN(DC)}}{V^+(R_{c2})} +$	+	- 2	∾ ₽	 R1 = 2R
II ac		- 1 ~	- 2	~ @	 R1 = 2R
iii		+	- 2	≈ ²	 $\frac{1}{R1} = \frac{V_{IN(DG)}}{V^+(R_{11})} + \frac{1}{2R}$

- The high speed of the LM358 allows the center frequency Ω_0 product of the filter to be : $f_0 \times \Omega_0 c5$ MHz
 - The above filter(e) meintaine performance ovar wide tamperatura renga
- Ona hait of LM359 acte as a true non-inverting integrator so only 2 empirihars (instead of 3 or 4) are needed for the biguad filler structure

3
z
0
ē.
₹.
5
a
ш
÷
-
2
\$
ш
۵
Ŧ
₹
-2
~
ŝ
2
7
⊋
2
-

	o(BR)	1	I	= c,/C	= RVR,
	Ŧ			H ₋	H +
	H _{o(HP)}	I	c/c	1	
	H _{o(BP)}	Ro/R _{i2}	R _Q Ci/RC	I	
	H _{o(LP)}	R/R ₁₂	I	I	
	f _Z (notch)	1	I	1/2 mVRR,CC	
	°°	R _o /R	R _o /R	RoR	
	10	½ πRC	$y_{2\pi}\text{RC}$	½ ¤RC	
	Rit	8	8	ų,	
	R ₁₂	Ra	8	8	
	σ	0	σ	υ	
	V ₀₂	Ч	ВР	1	
	Voi	ВР	H	Notch/ BR	
	Type	-	=	=	

Fig. 22-7. High-performance 2-amplifier bi-quad fitter(s) (NS).

$$\begin{aligned} \exists = \sqrt{\frac{RB}{R}} & \frac{R1C1}{\sqrt{R3C2R2C1}} + f_0 = \frac{1}{2m}\sqrt{\frac{RB}{R}} & \frac{1}{\sqrt{R2R3C1C2}} + f_{NOTCH} = \frac{1}{2m}\sqrt{\frac{R6}{R3R3R7C1C2}} \end{aligned} \\ \text{Vecessary condition for notch:} & \frac{1}{R6} = \frac{R1}{R4R7} \end{aligned}$$

Ex: fNOTCH = 3 kHz, Ω = 5, R1 = 270k, R2 = R3 = 20k, R4 = 27k, R5 = 20k, R6 = R8 = 10k, R7 = 100k, C1 = C2 = 0.001μF Better noise performance than the state-space approach

Fig. 22-8. Three-amplifier bi-quad notch filter (NS).

Fig. 22-9. Bandpass filters (NS).

322

EIN I

Fig. 22-10. LM387 bandpass active filter (NS).

Fig. 22-11. 20 kHz bandpass active filter (NS).

Use general equations, and tune each section separately $Q_{1st}SECTION \approx 0.541$, $Q_{2nd}SECTION \approx 1.306$ The response should have 0 dB peaking

Fig. 22-12. A 1 kHz 4 pole butterworth (NS).

Fig. 22-13. Multiple feedback bandpass filter (M).

324