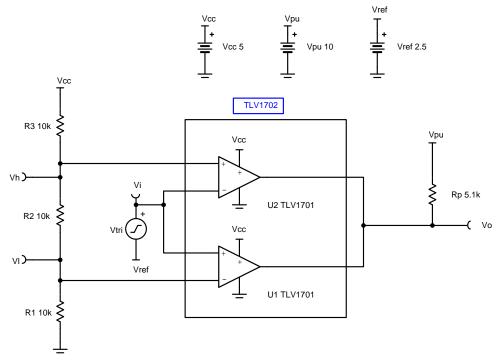


Analog Engineer's Circuit: Amplifiers

SBOA221A-January 2018-Revised February 2019

Window comparator circuit


Design Goals

Input		Output		Supply		
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
0V	5V	0V	36V	5V	0V	2.5V

V _L (Lower Threshold)	V _H (Upper Threshold)	Upper to Lower Threshold Ratio
1.66V	3.33V	2

Design Description

This circuit utilizes two comparators in parallel to determine if a signal is between two reference voltages. If the signal is within the window, the output is high. If the signal level is outside of the window, the output is low. For this design, the reference voltages are generated from a single supply with voltage dividers.

Design Notes

- 1. The input should not exceed the common mode limitations of the comparators.
- 2. If higher pullup voltages are used, R_p should be sized accordingly to prevent large current draw. The TLV1701 supports pullup voltages up to 36V.
- 3. Comparator must be open-drain or open-collector to allow for the ORed output.

www.ti.com

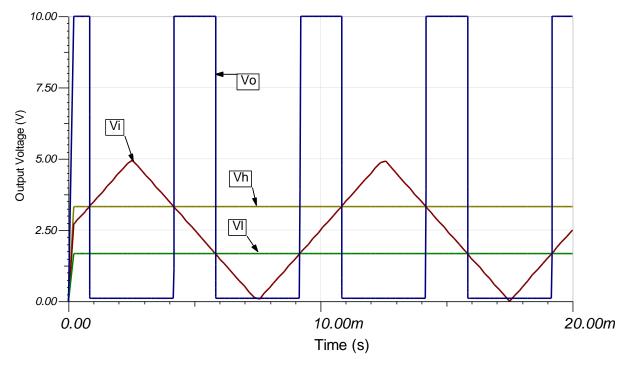
Design Steps

1. Define the upper (V_H) and lower (V_L) window voltages.

$$V_{H} = V_{cc} \times \frac{R_{1} + R_{2}}{R_{1} + R_{2} + R_{3}} = 3.33 V$$
$$V_{L} = V_{cc} \times \frac{R_{1}}{R_{1} + R_{2} + R_{3}} = 1.66 V$$
$$\frac{V_{H}}{V_{I}} = 1 + \frac{R_{2}}{R_{1}} = \frac{3.33V}{1.66V} = 2$$

2. Choose resistor values to achieve the desired window voltages.

$$rac{V_{H}}{V_{L}} = 1 + rac{R_{2}}{R_{1}} = 2$$
, so $R_{2} = R_{1}$


 $R_1 = R_2 = 10 k\Omega$ (Selected standard values)

$$R_3 = \frac{R_1 \times V_{cc}}{V_L} - (R_1 + R_2)$$

 $R_3 = \frac{10 k \Omega \times 5 V}{1.66 V} -$ 20k $\Omega =$ 10 .12 k Ω \thickapprox 10k Ω (Standard Value)

Design Simulations

Transient Simulation Results

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See the circuit SPICE simulation file SBOC516.

See TIPD178, www.ti.com/tool/tipd178.

Design Featured Op Amp

TLV1702				
V _{cc}	2.2V to 36V			
V _{inCM}	Rail-to-rail			
V _{out}	Open Collector (36V Max)			
V _{os}	2.5mV			
l _q	75µA/Ch			
I _b	15nA			
Rise Time	365ns			
Fall Time	240ns			
#Channels	1, 2, 4			
www.ti.com/product/tlv1702				

Revision History

Revision	Date	Change
A	February 2019	Downscale the title and changed title role to 'Amplifiers'. Added links to circuit cookbook landing page and SPICE simulation file.