

Simple window __discriminator

the comparator are as shown. V_A is an attenuated form of the input V_B , but V_B is .offset by an amount $-bV_S$ (V_S = supply voltage), and rises linearly with

 $\frac{R_1}{R_1 + R_2} = a$; $\frac{R_3}{R_3 + R_4} = b$; $R_5 \gg R_3 \parallel R_4$

 V_i until D_i becomes reverse biased, when it is clamped to V_{ref} . Thus the V_A and v_B curves cross twice, giving rise to the two switching points. V_B , below the knee, is given by $V_B = V_{in}(1-b) - bV_S$, and above by $V_B = V_{ref}$. Because $V_A = aV_{in}$, the lower switching point occurs at;

 $aV_{in} = (1-b) V_{in} - bV_{S}$ i.e. $V_{in} = -bV_{S}/(a+b-1),$ and the upper switching point at; $aV_{in} = V_{ref}$ i.e. $V_{in} = V_{ref}/a.$

By fixing the ratio, the two switching points may be varied independently by adjusting b and V_{ref} for the lower and upper points respectively. As shown, the circuit will work only with positive going input voltages, but by reversing the polarity of D_1 , V_{ref} and $-V_s$, may be made to work with negative going inputs. M. J. Newman,

M. J. Newman Stockton, Teesside.