A 55MPH SPEED-LMMTALARM

Automobile add-on device for highway safety

TO STAY within the $55-\mathrm{mph}$ national highway speed limit, one must keep one eye on the road and the other on the speedometer. This can be a dangerous situation at highway speeds when your whole attention should be fixed on the road. It would be far safer, therefore, if you could keep a constant eye on the road and have some audible means for alerting you when you have exceeded the speed limit. This is exactly what the "Cruisealert" described here was designed to do.

The Cruisealert works on the principal that, with a given vehicle, there is a close relationship between engine rpm and road speed. It constantly monitors engine rpm and is preset to sound an alarm when engine rpm reaches a value that causes your vehicle to travel at 55 mph (or some selected lower speed). When this happens, the Cruisealert sounds a beeper to alert you that you are at the legal speed limit. At no time do you have to take your eyes from the road. And the Cruisealert can be used with 4-, 6-, and 8-cylinder engines.

Circuit Operation. A schematic diagram of the Cruisealert is shown in Fig. 1. Components R1, R2, C1, and D1 both filter and clip the raw signal coming from the engine's distributor contacts. Resistor R1 and capacitor C1 form a singlestage low-pass filter that has a time constant of about 1.5 ms , which is long enough to provide smoothing for the transient, oscillatory-like waveforms present at the points. The frequency range is between 40 and 170 Hz , which approximately corresponds to a fourcylinder engine at a road velocity of about 30 mph and an eight-cylinder engine at approximately 70 mph .

Zener diode D1 clips the input voltage swing to approximately +7 and -0.7 volts, suitable for use by the following circuitry.

Positive-edge retriggerable monostable multivibrator IC1A functions as a frequency discriminator, while IC1B forms the annunciator section. The filtered and limited signal from the input filter is applied to IC1A via input current limiting resistor R2. This portion of the dual mul-
tivibrator is arranged to deliver an output pulse at pin 6 when triggered by a positive spike. The pertinent waveforms for IC1A are shown in Fig. 2.

Resistors R5 and R6, potentiometers R12 and R7, and capacitor C3 control the on time ($T_{o n}$) of the multivibrator. For the three relationships shown in Fig. 2, the on time of IC1A remains constant, regardless of the input frequency, while the off time ($T_{\text {off }}$) changes with the input frequency. As the input frequency increases and approaches the threshold frequency of the multivibrator, $T_{\text {on }}$ remains constant while $T_{\text {off }}$ diminishes. At the critical threshold frequency, Toff diminishes to zero. The resulting output is a constant logic 1 as shown in Fig. 2C.

Diode D3, resistor R13, and capacitor C5 form a negative-going integrating pulse detector. As long as the cathode of D3 (pin 6 of IC1) remains at logic 0, C5 remains fully charged.

For all input frequencies lower than the threshold frequency of the multivibrator, a negative-going Toff signal appears at pin 6 of IC1A, which forces C5's

Fig. I. Frequency discriminator IC1A triggers IC1B to sound alarm when input frequency from distrihutor points exceeds predetermined limit.

PARTS LIST

AI-SNP Sonalert or similar alarm
$\mathrm{Cl}-0.1-\mu \mathrm{F}, 50-\mathrm{V}$ tantalum
C2. C4. C5. C6-4.7- $\mu \mathrm{F}, 50-\mathrm{V}$ tantalum C3-().3.3- $\mu \mathrm{F}, 5()-\mathrm{V}$ tantalum
I)I. D2-IN755 (7.5-V, 400-mW) zener D3. D4-IN914 switching diode IC1-MC14528CP dual monostable multivibrator
Q1. Q2-MPS 3394 or similar transistor
Following are $1,-\mathrm{W} .10 \%$ resistors unless otherwise noted
RI-15.00) ohims
R2, R4, RI.3-100,000 ohms R.3-330 ohms

R5. RII-22.000 ohms
R6-470.000 ohms
R7-10 $10.0(0)$-ohn panel-mount potentiometer R8.R9-68.(0)0) ohms.
RIO-I megohm
R12- $10(0),(O)$-ohm, pe-mount potentiometer
Misc. $-4^{\prime \prime} \times 2 \frac{11}{\prime \prime} \times 21, \prime \prime(10.2 \times 5.7 \times 5.7 \mathrm{~cm})$ box: control knob; dry-transfer lettering kit: 16-pin IC socket (optional): hookup wire: solder: machine hardware: etc.
Note-A complete kit of parts is available for $\$ 29.95$ from EALAB Associates. Box 737. Smithtown, NY 11787.
negative terminal to near ground potential. When the input frequency exceeds the critical threshold frequency, the voltage step $T_{\text {off }}$ disappears and becomes a logic 1 (Fig. 2C). At this instant, diode D3 then becomes reverse biased, causing the negative side of $C 5$ to rise towards the +V through R 13 .

Retriggerable monostable multivibrator IC1B and transistors Q1 and Q2 form the annunciator section. The main triggering input at pin 12 responds only to voltage transitions, while master reset at pin 13 responds to dc levels. In this circuit, IC1B is arranged so that to initiate astable action, a constant ac trigger signal must be present at pin 12. This is accomplished by connecting this input to the filtered and clipped ac signal source generated by the distributor points.

When the input frequency is below the
discriminator's threshold frequency, the negative end of C5 is near ground. Since this point is connected to pin 13, a logic 0 at this input forces IC1B to assume a reset condition in which the Q and not-Q outputs are held at logic 0 and logic 1, respectively. At this time, C6 (connected between the two outputs via resistor R9) is fully charged to the voltage difference between the two outputs. The logic 0 level at Q also holds Q1 in the off condition via R9 and R10. The collector of Q1 is held at a logic 1 to allow the input pulses at pin 12 to trigger IC1B.

When the input frequency rises above the discriminator's threshold frequency, the voltage at the negative end of C5 assumes a positive (logic 1) potential. The logic 1 at pin 13 causes IC1B to be triggered by the input pulse train present on
pin 12. When triggered, the Q and not- Q outputs change state with a logic 1 and logic 0 appearing at the Q and not-Q outputs, respectively.
The logic 1 at the Q output turns Q2 on via R11, which activates alarm A1. At this time, the voltage at the junction of C6 and R9 instantly drops below ground and then gradually rises above ground due to the charging current through R9 whose source is the logic 1 at the Q output. When this voltage eventually rises above 0.7 volt above ground (one diode drop), Q1 switches on and its collector drops to ground level. By virtue of logicgate action, a logic 0 at pin 11 inhibits the input pulse stream at pin 12 from further triggering the multivibrator. In the absence of triggering pulses, the multivibrator eventually times out as determined by the C4/R8 time constant.

The subsequent change of state at the Q and not-Q outputs causes Q2 to switch off, silencing the alarm. Since R9 now "sees" a logic 0 source at the Q output, the voltage at the C6-R9 junction eventually drops to ground potential. When this junction reaches 0.7 volt, Q1 turns off and its collector assumes a logic 1 state via R4. This allows the pulse train at pin 12 to once again trigger the multivibrator. It is in this manner that the astable action of IC1B is sustained only when the master reset at pin 13 is maintained at logic 1. The waveforms associated with IC1B are shown in Fig. 3.

Hysteresis Dead-Band Circuit.

The frequency of the mechanical camrotor points breaker system used in the majority of engines is inherently unstable. Even if the engine's rpm were to be held absolutely constant, careful examination of the instantaneous frequency of the points would reveal some frequency modulation. This is due to a variety of factors such as a bent distributor shaft, variations in machining tolerances of the cam lobes, and, most of all, badly burned points.

Since the Cruisealert functions solely as a frequency discriminator, frequency modulation of the breaker points can lead to random and erratic triggering. To make the circuit immune to small incremental frequency variations, diode D4 was added. It's function is to increase and hold the dc voltage at the negative end of C5 when IC1B is operating (Q output is at logic-1). The result of this addition is illustrated in Fig. 4, which depicts the relationship between the point frequency and the alarm state. Examination of this chart shows that the alarm's turn-on frequency is slightly

Fig. 2. Waveforms for ICIA show how off time of output (pin 6) caries as frequency of input at pin 4 increases.

greater than its turn-off frequency. The difference between these two frequencies defines the hysteresis deadband, which in terms of vehicle road velocity is less than 2 mph .

Construction. The circuit can be built on a printed circuit board, the etching-and-drilling and components-placement guides for which are shown in Fig. 5. Note that SPEED control potentiometer R7 and the alarm are both mounted on the box in which the circuit is housed.

After $R 7$ is mounted, attach a pointer knob to its shaft and provide some kind of marking surface below the knob. Starting at the fully counterclockwise position, mark off 10 equally spaced points to the clockwise limit stop.

Drill a small hole in the Cruisealert's front panel so that trimmer adjust potentiometer R12 can be reached with a screwdriver after the pc board is in place. Connect the alarm and R7 to the pc board as shown in Fig. 5. Then connect three long insulated leads to the vehicle's electrical system to provide input.

Select a suitable mounting position in the vehicle. Route the input lead through the firewall and connect it to the screw connector of the ignition coil that goes to the distributor points. Connect the Ground lead to a convenient metal screw or bolt and the 12 -volt lead to a switched +12 -volt source, such as the lead that feeds the radio. Insulate all connections.

Photo at right shows the author's prototype with speed control potentiometer R7 at left and loudspeaker at right.
The hote in center is to gain access to R12 in making funal adjustments with passenger's aid.

Fig. 5. Actual size etching and drilling guide (above) and components placement (below) for printed circuit board.

Adjustment. The Cruisealert is designed to provide an overspeed alarm indication for selected road speeds between 30 and 70 mph for a four-, six-, or eight-cylinder engine. In the interests of safety, it is recommended that the following adjustments be made by a passenger and not the driver.

Using a small screwdriver, rotate R12 (RANGE) fully clockwise via the access hole in the front panel and leave the screwdriver engaged in the trimmer slot. Set the front-panel SPEED control (R7) knob to the fifth mark on its scale.

Drive the car until the speedometer indicates 55 mph and try to maintain this speed. Very slowly adjust R12 until the Cruisealert just starts to beep. Then remove the screwdriver. This completes the range setting, and the SPEED control is set to 55 mph . Note that the SPEED control's scale indications are only relative and do not correspond to vehicle speed.

To preset the Cruisealert to operate at another road speed, rotate the SPEED control fully clockwise, drive the car at the desired speed, and while maintaining this speed, slowly adjust the SPEED knob until the alarm sounds.

