## Microcontroller drives piezoelectric buzzer at high voltage through one pin

Mehmet Efe Ozbek, PhD, Atilim University, Ankara, Turkey

A previous Design Idea demonstrates how you can use a microcontroller to drive a piezoelectric buzzer at a high alternating voltage through a four-MOSFET circuit that interfaces to



Figure 1 One microprocessor I/O pin drives this circuit to generate an alternating voltage across the piezoelectric buzzer.

two of its I/O pins (**Reference 1**). This expanded Design Idea provides a modification of the previous circuit to save one of the I/O pins of the microcontroller.  $Q_4$ 's gate connects to  $Q_2$ 's drain

rather than a second I/O pin (**Figure 1**). The microcontroller turns on  $Q_2$  by applying a high logic level to the I/O pin, pulling Node A down to a low logic level. This action turns on  $Q_3$  and turns off  $Q_4$ . The voltage on Node B becomes 15V, and  $Q_1$ turns off. The voltage across the piezoelectric element is now 15V.

The microcontroller then toggles the I/O pin low, turning off  $Q_2$ .  $Q_1$  is also off, so Node A slowly rises to a high logic level through pullup resistor  $R_1$ . When the voltage on Node A reaches the switching threshold of the inverter comprising the  $Q_3$  and  $Q_4$  pair,  $Q_3$  quickly turns off and  $Q_4$  quickly turns on. The consequently low logic level on Node B turns on  $Q_1$  and speeds the increase of Node A's voltage. The 15V across the piezoelectric buzzer is now of the opposite polarity.

 $\rm R_2$  weakens the coupling between the output and the input of  $\rm Q_4$  due to the presence of the piezoelectric element. A value of 330 $\Omega$  for  $\rm R_2$  is usually sufficient to suppress high-frequency oscillations that the feedback causes. The drained power from the supply increases if you use low values for  $\rm R_1$ . Using excessively large values for  $\rm R_1$  also increases power dissipation by prolonging the switching of the transistors and associated shoot-through currents. The optimum value for  $\rm R_1$  is approximately 1 k $\Omega$ .

Saving an I/O pin with this design involves the trade-off of increased power consumption. The circuit's power consumption is thus one order of magnitude greater than the circuit described in the previous Design Idea.EDN

## REFERENCE

Ozbek, Mehmet Efe, "Microcontroller drives piezoelectric buzzer at high voltage," *EDN*, March 1, 2012, pg 44, http://bit.ly/JyzLpz.